Giải bài 6 trang 66 SGK Toán 10 tập 2 – Cánh diều>
Trong mặt phẳng toạ độ Oxy, cho ba điểm không thẳng hàng A(- 3 ; 1), B(-1; 3), I(4;2). Tìm toạ độ của hai điểm C, D sao cho tứ giác ABCD là hình bình hành nhận I làm tâm đối xứng.
Đề bài
Trong mặt phẳng toạ độ Oxy, cho ba điểm không thẳng hàng A(- 3 ; 1), B(-1; 3), I(4;2). Tìm toạ độ của hai điểm C, D sao cho tứ giác ABCD là hình bình hành nhận I làm tâm đối xứng.
Phương pháp giải - Xem chi tiết
Tâm đối xứng của hình bình hành là trung điểm hai đường chéo.
Với \(\overrightarrow a = \left( {{x_1};{y_1}} \right)\) và \(\overrightarrow b = \left( {{x_2},{y_2}} \right)\) , ta có: \(\overrightarrow a = \overrightarrow b \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2}\\{y_1} = {y_2}\end{array} \right.\)
Lời giải chi tiết
Gọi \(C\left( {a;b} \right),D\left( {m,n} \right) \Rightarrow \overrightarrow {IC} = \left( {a - 4,b - 2} \right)\) và \(\overrightarrow {ID} = \left( {m - 4,n - 2} \right)\)
Do I là tâm của hình bình hành ABCD nên I là trung điểm AC và BD.
Vậy ta có:\(\overrightarrow {AI} = \overrightarrow {IC} \)và \(\overrightarrow {BI} = \overrightarrow {ID} \)
Ta có: \(\overrightarrow {AI} = \left( {7;1} \right)\) và \(\overrightarrow {BI} = \left( {5; - 1} \right)\)
Do \(\overrightarrow {AI} = \overrightarrow {IC} \Leftrightarrow \left\{ \begin{array}{l}7 = a - 4\\1 = b - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 11\\b = 3\end{array} \right.\) .Vậy \(C\left( {11;3} \right)\)
Do \(\overrightarrow {BI} = \overrightarrow {ID} \Leftrightarrow \left\{ \begin{array}{l}5 = m - 4\\ - 1 = n - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 9\\n = 1\end{array} \right.\). Vậy \(D\left( {9;1} \right)\)
- Giải bài 7 trang 66 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 5 trang 66 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 4 trang 66 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 3 trang 65 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 2 trang 65 SGK Toán 10 tập 2 – Cánh diều
>> Xem thêm