Giải bài 3 trang 65 SGK Toán 10 tập 2 – Cánh diều>
Tìm các cặp số thực a và b sao cho mỗi cặp vecto sau bằng nhau:
Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Tìm các cặp số thực a và b sao cho mỗi cặp vecto sau bằng nhau:
a) \(\overrightarrow u = \left( {2a - 1; - 3} \right)\) và \(\overrightarrow v = \left( {3;4b + 1} \right)\)
b) \(\overrightarrow x = \left( {a + b; - 2a + 3b} \right)\) và \(\overrightarrow y = \left( {2a - 3;4b} \right)\)
Phương pháp giải - Xem chi tiết
Với \(\overrightarrow a = \left( {{x_1};{y_1}} \right)\) và \(\overrightarrow b = \left( {{x_2},{y_2}} \right)\) , ta có: \(\overrightarrow a = \overrightarrow b \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2}\\{y_1} = {y_2}\end{array} \right.\)
Lời giải chi tiết
a) Để \(\overrightarrow u = \overrightarrow v \Leftrightarrow \left\{ \begin{array}{l}2a - 1 = 3\\ - 3 = 4b + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 1\end{array} \right.\)
Vậy \(\left\{ \begin{array}{l}a = 2\\b = - 1\end{array} \right.\) thì \(\overrightarrow u = \overrightarrow v \)
b) \(\overrightarrow x = \overrightarrow y \Leftrightarrow \left\{ \begin{array}{l}a + b = 2a - 3\\ - 2a + 3b = 4b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 2\end{array} \right.\)
Vậy \(\left\{ \begin{array}{l}a = 1\\b = - 2\end{array} \right.\) thì \(\overrightarrow x = \overrightarrow y \)
- Giải bài 4 trang 66 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 5 trang 66 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 6 trang 66 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 7 trang 66 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 2 trang 65 SGK Toán 10 tập 2 – Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục