Lý thuyết Biểu thức tọa độ của các phép toán vecto - SGK Toán 10 Cánh diều>
A. Lý thuyết 1. Biểu thức tọa độ của phép cộng hai vecto, phép trừ hai vecto, phép nhân một số với một vecto
Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
A. Lý thuyết
1. Biểu thức tọa độ của phép cộng hai vecto, phép trừ hai vecto, phép nhân một số với một vecto
Nếu \(\overrightarrow u = ({x_1};{y_1})\) và \(\overrightarrow v = ({x_2};{y_2})\) thì: + \(\overrightarrow u + \overrightarrow v = ({x_1} + {x_2};{y_1} + {y_2})\). + \(\overrightarrow u - \overrightarrow v = ({x_1} - {x_2};{y_1} - {y_2})\). + \(k\overrightarrow u = (k{x_1};k{y_1})\) với \(k \in \mathbb{R}\). |
Nhận xét: Hai vecto \(\overrightarrow u = ({x_1};{y_1})\) và \(\overrightarrow v = ({x_2};{y_2})\) \((\overrightarrow v \ne \overrightarrow 0 )\) cùng phương khi và chỉ khi có một số thực k sao cho \({x_1} = k{x_2}\) và \({y_1} = k{y_2}\).
2. Tọa độ trung điểm đoạn thẳng và tọa độ trọng tâm tam giác
a) Tọa độ trung điểm đoạn thẳng
Cho hai điểm \(A({x_A};{y_A})\) và \(B({x_B};{y_B})\). Nếu \(M({x_M};{y_M})\) là trung điểm đoạn thẳng AB thì \({x_M} = \frac{{{x_A} + {x_B}}}{2}\); \({y_M} = \frac{{{y_A} + {y_B}}}{2}\). |
b) Tọa độ trọng tâm tam giác
Cho tam giác ABC có \(A({x_A};{y_A})\), \(B({x_B};{y_B})\), \(C({x_C};{y_C})\). Nếu \(G({x_G};{y_G})\) là trọng tâm tam giác ABC thì \({x_M} = \frac{{{x_A} + {x_B} + {x_C}}}{3}\); \({y_M} = \frac{{{y_A} + {y_B} + {y_C}}}{3}\). |
3. Biểu thức tọa độ của tích vô hướng
Nếu \(\overrightarrow u = ({x_1};{y_1})\) và \(\overrightarrow v = ({x_2};{y_2})\) thì \(\overrightarrow u .\overrightarrow v = {x_1}{x_2} + {y_1}{y_2}\). |
Nhận xét:
a) Nếu \(\overrightarrow a = (x;y)\) thì \(\left| {\overrightarrow a } \right| = \sqrt {\overrightarrow a .\overrightarrow a } = \sqrt {{x^2} + {y^2}} \).
b) Nếu \(A({x_A};{y_A})\) và \(B({x_B};{y_B})\) thì \(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{({x_B} - {x_A})}^2} + {{({y_B} - {y_A})}^2}} \).
c) Với hai vecto \(\overrightarrow u = ({x_1};{y_1})\) và \(\overrightarrow v = ({x_2};{y_2})\) đều khác \(\overrightarrow 0 \), ta có:
+ \(\overrightarrow u \) vuông góc \(\overrightarrow v \) khi và chỉ khi \(\overrightarrow u .\overrightarrow v = {x_1}{x_2} + {y_1}{y_2} = 0\).
+ \(\cos (\overrightarrow u ,\overrightarrow v ) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}} = \frac{{{x_1}{x_2} + {y_1}{y_2}}}{{\sqrt {{x_1}^2 + {y_1}^2} .\sqrt {{x_2}^2 + {y_2}^2} }}\).
B. Bài tập
Bài 1: Cho \(\overrightarrow u = (2; - 1)\), \(\overrightarrow v = (1;5)\). Tìm tọa độ của \(\overrightarrow u + \overrightarrow v \) và \(\overrightarrow u - \overrightarrow v \).
Giải:
\(\overrightarrow u + \overrightarrow v = (2 + 1; - 1 + 5) = (3;4)\); \(\overrightarrow u - \overrightarrow v = (2 - 1; - 1 - 5) = (1; - 6)\).
Bài 2: Cho ba điểm A(-1;-3), B(2;3) và C(3;5). Chứng minh ba điểm A, B, C thẳng hàng.
Giải:
Ta có: \(\overrightarrow {AB} = (3;6)\), \(\overrightarrow {BC} = (1;2)\). Suy ra \(\overrightarrow {AB} = 3\overrightarrow {BC} \).
Vậy ba điểm A, B, C thẳng hàng.
Bài 3: Cho tma giác ABC có A(-2;1), B(2;5), C(5;2). Tìm tọa độ trung điểm M của đoạn thẳng AB và trọng tâm G của tam giác ABC.
Giải:
Do \(M({x_M};{y_M})\) là trung điểm của đoạn thẳng AB nên:
\({x_M} = \frac{{ - 2 + 2}}{2} = 0\); \({y_M} = \frac{{1 + 5}}{2} = 3\).
Vậy M(0;3).
Do \(G({x_G};{y_G})\) là trọng tâm tam giác ABC nên:
\({x_G} = \frac{{ - 2 + 2 + 5}}{3} = \frac{5}{3}\); \({y_G} = \frac{{1 + 5 + 2}}{3} = \frac{8}{3}\).
Vậy \(G\left( {\frac{5}{3};\frac{8}{3}} \right)\).
Bài 4: Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(2;2), B(1;-1), C(8;0).
a) Tính \(\overrightarrow {BA} .\overrightarrow {BC} \) và \(\cos \widehat {ABC}\).
b) Chứng minh \(\overrightarrow {AB} \bot \overrightarrow {AC} \).
c) Giải tam giác ABC.
Giải:
a) Ta có \(\overrightarrow {BA} = (1;3)\), \(\overrightarrow {BC} = (7;1)\). Do đó \(\overrightarrow {BA} .\overrightarrow {BC} = 1.7 + 3.1 = 10\).
Mặt khác: \(\left| {\overrightarrow {BA} } \right| = \sqrt {{1^2} + {3^2}} = \sqrt {10} \), \(\left| {\overrightarrow {BC} } \right| = \sqrt {{7^2} + {1^2}} = \sqrt {50} \).
\(\cos \widehat {ABC} = \cos (\overrightarrow {BA} ,\overrightarrow {BC} ) = \frac{{\overrightarrow {BA} .\overrightarrow {BC} }}{{\left| {\overrightarrow {BA} } \right|.\left| {\overrightarrow {BC} } \right|}} = \frac{{10}}{{\sqrt {10} .\sqrt {50} }} = \frac{{\sqrt 5 }}{5}\).
b) Do \(\overrightarrow {AB} = ( - 1; - 3)\) và \(\overrightarrow {AC} = (6; - 2)\) nên \(\overrightarrow {AB} .\overrightarrow {AC} = ( - 1).6 + ( - 3).( - 2) = 0\).
Vậy \(\overrightarrow {AB} \bot \overrightarrow {AC} \).
c) Do \(\overrightarrow {AB} \bot \overrightarrow {AC} \) nên \(\widehat {BAC} = {90^o}\), tức tam giác ABC vuông tại A.
Mà \(\cos \widehat {ABC} = \frac{{\sqrt 5 }}{5}\) nên \(\widehat {ABC} \approx {63^o}\). Vì thế \(\widehat {ACB} \approx {90^o} - {63^o} = {27^o}\).
Mặt khác: \(AB = \left| {\overrightarrow {BA} } \right| = \sqrt {10} \), \(BC = \left| {\overrightarrow {BC} } \right| = \sqrt {50} = 5\sqrt 2 \),
\(CA = \sqrt {B{C^2} - A{B^2}} = \sqrt {{{\left( {5\sqrt 2 } \right)}^2} - {{\left( {\sqrt {10} } \right)}^2}} = 2\sqrt {10} \).
- Giải mục I trang 67, 68 SGK Toán 10 tập 2 - Cánh diều
- Giải mục II trang 69 SGK Toán 10 tập 2 - Cánh diều
- Giải mục III trang 70 SGK Toán 10 tập 2 - Cánh diều
- Giải bài 1 trang 72 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 2 trang 72 SGK Toán 10 tập 2 – Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Ba đường conic - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường tròn - SGK Toán 10 Cánh diều
- Lý thuyết Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Biểu thức tọa độ của các phép toán vecto - SGK Toán 10 Cánh diều
- Lý thuyết Ba đường conic - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường tròn - SGK Toán 10 Cánh diều
- Lý thuyết Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Biểu thức tọa độ của các phép toán vecto - SGK Toán 10 Cánh diều