Giải bài 2 trang 72 SGK Toán 10 tập 2 – Cánh diều


Trong mặt phẳng toạ độ Oxy, cho A(-2;3), B(4; 5), C(2;- 3). a) Chứng minh ba điểm A, B, C không thẳng hàng. b) Tìm toạ độ trọng tâm G của tam giác ABC. c) Giải tam giác ABC (làm tròn các kết quả đến hàng đơn vị).

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Trong mặt phẳng toạ độ Oxy, cho A(-2;3), B(4; 5), C(2;- 3).

a) Chứng minh ba điểm A, B, C không thẳng hàng.

b) Tìm toạ độ trọng tâm G của tam giác ABC.

c) Giải tam giác ABC (làm tròn các kết quả đến hàng đơn vị).

Phương pháp giải - Xem chi tiết

a) Hai vectơ \(\overrightarrow u  = \left( {{x_1},{y_1}} \right)\), \(\overrightarrow v  = \left( {{x_2},{y_2}} \right)\) (\(\overrightarrow v  \ne 0\) ) cùng phương khi và chỉ khi có một số thực k sao cho \({x_1}{\rm{ =  }}k{x_2}\) và \({y_1} = {\rm{ }}k{y_2}\) .

b) G là trọng tâm tam giác ABC thì tọa độ G là: \(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3}} \right)\)

c) Tính tất cả các cạnh và các góc của tam giác ABC:

Nếu \(\overrightarrow a  = \left( {x;y} \right) \Rightarrow \left| {\overrightarrow a } \right| = \sqrt {{x^2} + {y^2}} \)

Với hai vectơ \(\overrightarrow u  = \left( {{x_1},{y_1}} \right)\), \(\overrightarrow v  = \left( {{x_2},{y_2}} \right)\)đều khác vectơ không, ta có:

+ \(\overrightarrow u \) và \(\overrightarrow v \) vuông góc với nhau khi và chỉ khi \({x_1}.{x_2} + {y_1}.{y_2} = 0\)

+ \(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|\left| {\overrightarrow v } \right|}} = \frac{{{x_1}.{x_2} + {y_1}.{y_2}}}{{\sqrt {x_1^2 + y_1^2} .\sqrt {x_2^2 + y_2^2} }}\)

Lời giải chi tiết

a) Ta có: \(\overrightarrow {AB}  = \left( {6;2} \right),\overrightarrow {AC}  = \left( {4; - 6} \right)\)

Do \(\overrightarrow {AB}  \ne k.\overrightarrow {AC} \) nên A, B, C không thẳng hàng

b) Do G là trọng tâm tam giác ABC nên \(\left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3} = \frac{{ - 2 + 4 + 2}}{3} = \frac{4}{3}\\{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3} = \frac{{3 + 5 + \left( { - 3} \right)}}{3} = \frac{5}{3}\end{array} \right.\)

Vậy \(G\left( {\frac{4}{3};\frac{5}{3}} \right)\)

c) Ta có: \(\overrightarrow {AB}  = \left( {6;2} \right),\overrightarrow {AC}  = \left( {4; - 6} \right),\overrightarrow {BC}  = \left( { - 2; - 8} \right)\)

Suy ra: \(\begin{array}{l}AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{6^2} + {2^2}}  = \sqrt {40} \\AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{4^2} + {{\left( { - 6} \right)}^2}}  = \sqrt {52} \\BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 8} \right)}^2}}  = \sqrt {68} \end{array}\)

Ta có:

\(\begin{array}{l}\cos \widehat {BAC} = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{6.4 + 2.\left( { - 6} \right)}}{{\sqrt {{6^2} + {2^2}} .\sqrt {{4^2} + {{\left( { - 6} \right)}^2}} }} \approx 0,263 \Rightarrow \widehat {BAC} \approx {74^o}\\\cos \widehat {ABC} = \cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = \frac{{\left( { - 6} \right).\left( { - 2} \right) + \left( { - 2} \right).\left( { - 8} \right)}}{{\sqrt {{{\left( { - 6} \right)}^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 8} \right)}^2}} }} \approx 0,537 \Rightarrow \widehat {ABC} \approx {57^o}\end{array}\)
Áp dụng tính chất tổng ba góc trong một tam giác ta có: \(\widehat {ACB} \approx {180^o} - {74^o} - {57^o} \approx {49^o}\)


Bình chọn:
4.2 trên 15 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí