Giải bài 6 trang 46 sách bài tập toán 12 - Chân trời sáng tạo>
Cho hình hộp chữ nhật (ABCD.A'B'C'D') có (DA = 2,DC = 3,DD = 2). Tính khoảng cách từ đỉnh (B') đến mặt phẳng (left( {BA'C'} right)).
Đề bài
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(DA = 2,DC = 3,DD = 2\).
Tính khoảng cách từ đỉnh \(B'\) đến mặt phẳng \(\left( {BA'C'} \right)\).
Phương pháp giải - Xem chi tiết
Gắn vào hệ trục toạ độ và sử dụng công thức tính khoảng cách từ một điểm đến một mặt phẳng.
Lời giải chi tiết
Vì \(ABCD.A'B'C'D'\) là hình hộp chữ nhật nên các đường thẳng \(DA,DC,DD'\) đôi một vuông góc.
Do đó ta có thể gắn hệ trục toạ độ \(Oxyz\) thoả mãn \(D\left( {0;0;0} \right),A\left( {2;0;0} \right),C\left( {0;3;0} \right),D'\left( {0;0;2} \right)\).
Khi đó \(B\left( {2;3;0} \right),B'\left( {2;3;2} \right),A'\left( {2;0;2} \right),C'\left( {0;3;2} \right)\).
Ta có: \(\overrightarrow {BA'} = \left( {0; - 3;2} \right),\overrightarrow {BC'} = \left( { - 2;0;2} \right)\).
Khi đó, \(\left[ {\overrightarrow {BA'} ,\overrightarrow {BC'} } \right] = \left( {\left( { - 3} \right).2 - 2.0;2.\left( { - 2} \right) - 0.2;0.0 - \left( { - 3} \right).\left( { - 2} \right)} \right) = \left( { - 6; - 4; - 6} \right)\) là vectơ pháp tuyến của mặt phẳng \(\left( {BA'C'} \right)\).
Phương trình mặt phẳng \(\left( {BA'C'} \right)\) là:
\( - 6\left( {x - 2} \right) - 4\left( {y - 3} \right) - 6\left( {z - 0} \right) = 0 \Leftrightarrow - 6x - 4y - 6{\rm{z}} + 24 = 0 \Leftrightarrow 3{\rm{x}} + 2y + 3{\rm{z}} - 12 = 0\).
Khi đó khoảng cách từ điểm \(B'\) đến mặt phẳng \(\left( {BA'C'} \right)\) bằng:
\(d\left( {B',\left( {BA'C'} \right)} \right) = \frac{{\left| {3.2 + 2.3 + 3.2 - 12} \right|}}{{\sqrt {{3^2} + {2^2} + {3^2}} }} = \frac{{3\sqrt {22} }}{{11}}\).
- Giải bài 7 trang 46 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 46 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 45 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 3 trang 45 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 2 trang 45 sách bài tập toán 12 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 8 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 3 trang 87 sách bài tập toán 12 - Chân trời sáng tạo