Giải bài 1 trang 45 sách bài tập toán 12 - Chân trời sáng tạo


Cho mặt phẳng (left( Q right)) nhận (overrightarrow a = left( {4;0;1} right);overrightarrow b = left( {2;1;1} right)) làm cặp vectơ chỉ phương. Tìm một vectơ pháp tuyến của (left( Q right)).

Đề bài

Cho mặt phẳng \(\left( Q \right)\) nhận \(\overrightarrow a  = \left( {4;0;1} \right);\overrightarrow b  = \left( {2;1;1} \right)\) làm cặp vectơ chỉ phương. Tìm một vectơ pháp tuyến của \(\left( Q \right)\).

Phương pháp giải - Xem chi tiết

Lập phương trình tổng quát của mặt phẳng \(\left( \alpha  \right)\) đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và biết cặp vectơ chỉ phương \(\overrightarrow a ,\overrightarrow b \):

Bước 1: Tìm một vectơ pháp tuyến \(\overrightarrow n  = \left[ {\overrightarrow a ,\overrightarrow b } \right]\).

Bước 2: Lập phương trình mặt phẳng \(\left( \alpha  \right)\) đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ pháp tuyến \(\overrightarrow n \).

Lời giải chi tiết

Ta có: \(\left[ {\overrightarrow a ,\overrightarrow b } \right] = \left( {0.1 - 1.1;1.2 - 4.1;4.1 - 0.2} \right) = \left( { - 1; - 2;4} \right)\).

Vậy \(\overrightarrow n  = \left( { - 1; - 2;4} \right)\) là một vectơ pháp tuyến của \(\left( Q \right)\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí