Giải bài 55 trang 118 sách bài tập toán 11 - Cánh diều>
Cho tứ diện \(ABCD\). Trên cạnh \(CD\) lấy hai điểm \(M\) và \(N\) khác nhau
Đề bài
Cho tứ diện \(ABCD\). Trên cạnh \(CD\) lấy hai điểm \(M\) và \(N\) khác nhau. Chứng minh rằng các đường thẳng \(AM\) và \(BN\) không cắt nhau.
Phương pháp giải - Xem chi tiết
Chứng minh bằng phương pháp “phản chứng”: Giả sử \(AM\) cắt \(BN\), ta sẽ chứng minh được \(A\), \(B\), \(C\), \(D\) đồng phẳng, và đây là điều vô lí. Từ đó suy ra điều phải chứng minh.
Lời giải chi tiết
Giả sử \(AM\) cắt \(BN\). Như vậy tồn tại mặt phẳng \(\left( P \right)\) chứa hai đường thẳng \(AM\) và \(BN\).
Do \(M\) và \(N\) cùng nằm trên \(\left( P \right)\), ta suy ra đường thẳng \(MN\) cũng nằm trên \(\left( P \right)\). Từ đó \(C\) và \(D\) cũng thuộc \(\left( P \right)\).
Như vậy \(A\), \(B\), \(C\), \(D\) cùng thuộc mặt phẳng \(\left( P \right)\). Điều này là vô lí, do với mọi tứ diện \(ABCD\) thì 4 điểm \(A\), \(B\), \(C\), \(D\) luôn không đồng phẳng.
Do đó điều giả sử là sai.
Vậy hai đường thẳng \(AM\) và \(BN\) không cắt nhau.
- Giải bài 56 trang 118 sách bài tập toán 11 - Cánh diều
- Giải bài 57 trang 118 sách bài tập toán 11 - Cánh diều
- Giải bài 58 trang 118 sách bài tập toán 11 - Cánh diều
- Giải bài 59 trang 118 sách bài tập toán 11 - Cánh diều
- Giải bài 60 trang 118 sách bài tập toán 11 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục