Giải bài 5.33 trang 36 sách bài tập toán 12 - Kết nối tri thức


Trong không gian Oxyz, phương trình mặt cầu (S) có tâm (Ileft( {1;2; - 1} right)) và (S) đi qua (Aleft( { - 1;1;0} right)) là A. ({left( {x - 1} right)^2} + {left( {y - 2} right)^2} + {left( {z + 1} right)^2} = sqrt 6 ). B. ({left( {x + 1} right)^2} + {left( {y + 2} right)^2} + {left( {z - 1} right)^2} = 6). C. ({left( {x - 1} right)^2} + {left( {y - 2} right)^2} + {left( {z + 1} right)^2} = 6). D. ({left( {x + 1} right)^2} + {left( {y - 1} righ

Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Hoá - Sinh - Sử - Địa

Đề bài

Trong không gian Oxyz, phương trình mặt cầu (S) có tâm \(I\left( {1;2; - 1} \right)\) và (S) đi qua \(A\left( { - 1;1;0} \right)\) là

A. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = \sqrt 6\).                             

B. \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 6\).                     

C. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 6\).                      

D. \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = 6\).

Phương pháp giải - Xem chi tiết

Xác định bán kính mặt cầu sau đó viết phương trình mặt cầu.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Bán kính mặt cầu (S) là \(IA = \sqrt {{2^2} + {1^2} + {1^2}}  = \sqrt 6 \).

Phương trình mặt cầu (S) là \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 6\).

Vậy ta chọn đáp án C.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 5.34 trang 36 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian Oxyz, phương trình ({x^2} + {y^2} + {z^2} - 2x + 4y + 1 = 0) là phương trình mặt cầu có tâm I và bán kính R lần lượt là A. (Ileft( { - 1;2;0} right);R = 2). B. (Ileft( {1; - 2;0} right);R = 2). C. (Ileft( { - 1;2;0} right);R = 4). D. (Ileft( {1; - 2;0} right);R = 4).

  • Giải bài 5.35 trang 36 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian Oxyz, một vectơ pháp tuyến của mặt phẳng chứa đường thẳng (Delta :left{ begin{array}{l}x = 1 + t\y = - 2 + 2t\z = 3 - tend{array} right.) và đi qua điểm (Aleft( {2; - 1;1} right)) là A. (overrightarrow {{n_1}} = left( {3; - 1;1} right)). B. (overrightarrow {{n_2}} = left( {3;1; - 1} right)). C. (overrightarrow {{n_3}} = left( {1; - 1;3} right)). D. (overrightarrow {{n_4}} = left( { - 1;3;1} right)).

  • Giải bài 5.36 trang 37 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian Oxyz, khoảng cách từ điểm (Aleft( { - 2;1;0} right)) đến mặt phẳng (left( P right):2x - 2y + z - 3 = 0) bằng A. 2. B. 6. C. 3. D. 9.

  • Giải bài 5.37 trang 37 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian Oxyz, cho hai đường thẳng: (Delta :left{ begin{array}{l}x = 1 - t\y = 2 + t\z = - 1 + 2tend{array} right.) và (Delta ':frac{{x - 2}}{2} = frac{{y - 1}}{1} = frac{{z + 3}}{{ - 3}}). Vị trí tương đối của hai đường thẳng này là A. chéo nhau. B. cắt nhau. C. song song. D. trùng nhau.

  • Giải bài 5.38 trang 37 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian Oxyz, cho ba điểm \(A\left( {2;3; - 1} \right),B\left( { - 1;2;0} \right)\) và \(C\left( {3;1;2} \right)\). a) Viết phương trình mặt phẳng (ABC). b) Viết phương trình tham số và phương trình chính tắc của đường thẳng AB.

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí