Giải bài 50 trang 23 sách bài tập toán 12 - Cánh diều


Tiệm cận đứng, tiệm cận ngang của đồ thị hàm số \(y = \frac{{2{\rm{x}} - 7}}{{6 - 3{\rm{x}}}}\) là: A. Tiệm cận đứng là đường thẳng \(x = 2\); tiệm cận ngang là đường thẳng \(y = \frac{1}{3}\). B. Tiệm cận đứng là đường thẳng \(x = \frac{7}{2}\); tiệm cận ngang là đường thẳng \(y = - \frac{2}{3}\). C. Tiệm cận đứng là đường thẳng \(x = 2\); tiệm cận ngang là đường thẳng \(y = \frac{2}{3}\). D. Tiệm cận đứng là đường thẳng \(x = 2\); tiệm cận ngang là đường thẳng \(y = - \frac{2}{3}\).

Đề bài

Tiệm cận đứng, tiệm cận ngang của đồ thị hàm số \(y = \frac{{2{\rm{x}} - 7}}{{6 - 3{\rm{x}}}}\) là:

A. Tiệm cận đứng là đường thẳng \(x = 2\); tiệm cận ngang là đường thẳng \(y = \frac{1}{3}\).

B. Tiệm cận đứng là đường thẳng \(x = \frac{7}{2}\); tiệm cận ngang là đường thẳng \(y =  - \frac{2}{3}\).

C. Tiệm cận đứng là đường thẳng \(x = 2\); tiệm cận ngang là đường thẳng \(y = \frac{2}{3}\).

D. Tiệm cận đứng là đường thẳng \(x = 2\); tiệm cận ngang là đường thẳng \(y =  - \frac{2}{3}\).

Phương pháp giải - Xem chi tiết

‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn: \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) =  + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) =  - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) =  + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) =  - \infty \)

thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.

‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.

Lời giải chi tiết

Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ 2 \right\}\).

Ta có:

• \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{2{\rm{x}} - 7}}{{6 - 3{\rm{x}}}} = \mathop {\lim }\limits_{x \to {2^ - }} \left( { - \frac{2}{3} - \frac{3}{{6 - 3{\rm{x}}}}} \right) =  - \infty \)

\(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{2{\rm{x}} - 7}}{{6 - 3{\rm{x}}}} = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - \frac{2}{3} - \frac{3}{{6 - 3{\rm{x}}}}} \right) =  + \infty \)

Vậy \(x = 2\) là tiệm cận đứng của đồ thị hàm số đã cho.

• \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{2{\rm{x}} - 7}}{{6 - 3{\rm{x}}}} =  - \frac{2}{3};\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to  - \infty } \frac{{2{\rm{x}} - 7}}{{6 - 3{\rm{x}}}} =  - \frac{2}{3}\)

Vậy \(y =  - \frac{2}{3}\) là tiệm cận ngang của đồ thị hàm số đã cho.

Chọn D.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 51 trang 23 sách bài tập toán 12 - Cánh diều

    Đồ thị hàm số nào sau đây nhận đường thẳng (x = - 1) làm tiệm cận đứng? A. (y = frac{{3{rm{x}} - 1}}{{{rm{x}} + 1}}). B. (y = frac{{2{rm{x}} + 1}}{{{rm{x}} - 1}}). C. (y = frac{{ - x + 1}}{{{rm{x}} - 2}}). D. (y = frac{{x + 1}}{{{rm{x}} - 2}}).

  • Giải bài 52 trang 23 sách bài tập toán 12 - Cánh diều

    Tiệm cận xiên của đồ thị hàm số (y = 2x - 1 - frac{2}{{x + 1}}) là đường thẳng: A. (y = 2x). B. (y = x + 1). C. (y = 2x - 1). D. (y = - 2x + 1).

  • Giải bài 53 trang 23 sách bài tập toán 12 - Cánh diều

    Cho hàm số (y = fleft( x right)) xác định trên (mathbb{R}backslash left{ 1 right}), liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau: Tiệm cận đứng của đồ thị hàm số là đường thẳng: A. (x = 1). B. (x = 2). C. (y = 1). D. (y = 2).

  • Giải bài 54 trang 24 sách bài tập toán 12 - Cánh diều

    Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ { - 2} \right\}\), liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau: Khẳng định nào sau đây là đúng? A. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(y = 2\) và tiệm cận ngang là đường thẳng \(x = - 2\). B. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(y = - 2\) và tiệm cận ngang là đường thẳng \(x = 2\). C. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = 2\) và tiệm cận ngang là đường

  • Giải bài 55 trang 24 sách bài tập toán 12 - Cánh diều

    Cho hàm số (y = fleft( x right)) xác định trên (mathbb{R}backslash left{ { - 2} right}), liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau: Khẳng định nào sau đây là đúng? A. Đồ thị hàm số có tiệm cận đứng là đường thẳng (x = - 2) và không có tiệm cận ngang. B. Đồ thị hàm số có tiệm cận đứng là đường thẳng (x = - 2) và tiệm cận ngang là đường thẳng (y = 3). C. Đồ thị hàm số không có tiệm cận đứng và tiệm cận ngang là đường thẳng (y = - 2). D. Đồ thị hàm

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Cánh diều - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí