Giải bài 5 trang 86 SGK Toán 10 tập 2 – Cánh diều


Cho ba điểm A(2;- 1), B(1 ; 2) và C(4;- 2). Tính số đo góc BAC và góc giữa hai đường thẳng AB, AC.

Đề bài

Cho ba điểm A(2;- 1), B(1 ; 2) và C(4;- 2). Tính số đo góc BAC và góc giữa hai đường thẳng AB, AC.

Phương pháp giải - Xem chi tiết

\(\cos \widehat {BAC} = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right)\)

\(\cos \left( {AB,AC} \right) = \left| {\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right)} \right|\)

Lời giải chi tiết

Ta có: \(\overrightarrow {AB}  = \left( { - 1;3} \right);\overrightarrow {AC}  = \left( {2; - 1} \right)\)

Vậy\(\cos \left( {AB,AC} \right) = \left| {\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right)} \right| = \frac{{\left| { - 1.2 + 3.\left( { - 1} \right)} \right|}}{{\sqrt {{{\left( { - 1} \right)}^2} + {3^2}} .\sqrt {{2^2} + {{\left( { - 1} \right)}^2}} }} = \frac{1}{{\sqrt 2 }} \Rightarrow \widehat {BAC} = {45^o}\)


Bình chọn:
4 trên 9 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí