Giải bài 5 trang 57 sách bài tập toán 9 - Cánh diều tập 2>
a) Điểm (Aleft( {0,2;1} right)) thuộc đồ thị hàm số nào trong các hàm số sau: (y = 10{x^2};y = - 10{x^2};y = 25{x^2};y = - 25{x^2};y = frac{1}{{25}}{x^2};y = - frac{1}{{25}}{x^2}) b) Trong các điểm (Bleft( { - 2;4sqrt 3 } right);Cleft( { - 2; - 4sqrt 3 } right);Dleft( { - 0,2; - 0,4sqrt 3 } right);Eleft( {0,4sqrt 3 ;0,2} right)), điểm nào thuộc đồ thị hàm số (y = - sqrt 3 {x^2}).
Đề bài
a) Điểm \(A\left( {0,2;1} \right)\) thuộc đồ thị hàm số nào trong các hàm số sau:
\(y = 10{x^2};y = - 10{x^2};\) \(y = 25{x^2};\) \(y = - 25{x^2};\) \(y = \frac{1}{{25}}{x^2};\) \(y = - \frac{1}{{25}}{x^2}\)
b) Trong các điểm \(B\left( { - 2;4\sqrt 3 } \right);\) \(C\left( { - 2; - 4\sqrt 3 } \right);\) \(D\left( { - 0,2; - 0,4\sqrt 3 } \right);\) \(E\left( {0,4\sqrt 3 ;0,2} \right)\), điểm nào thuộc đồ thị hàm số \(y = - \sqrt 3 {x^2}\).
Phương pháp giải - Xem chi tiết
a) Thay tọa độ của điểm \(A\left( 0,2;1 \right)\) vào các hàm số $y=a{{x}^{2}}$, nếu $a.{{\left( 0,2 \right)}^{2}}=1$ thì điểm A thuộc đồ thị hàm số.
b) Thay tọa độ các điểm $\left( {{x}_{0}};{{y}_{0}} \right)$ vào đồ thị hàm số \(y=-\sqrt{3}{{x}^{2}}\), nếu \({{y}_{0}}=-\sqrt{3}{{x}_{0}}^{2}\) thì điểm thuộc đồ thị hàm số \(y=-\sqrt{3}{{x}^{2}}\).
Lời giải chi tiết
a) Vì tọa độ của điểm A có tung độ là 1 > 0 nên điểm A không thuộc đồ thị hàm số \(y=-10{{x}^{2}};y=-25{{x}^{2}};y=-\frac{1}{25}{{x}^{2}}\).
Thay $x=0,2$ vào hàm số $y=10{{x}^{2}}$, ta được: $y=10.0,{{2}^{2}}=0,4\ne 1$ nên \(A\left( 0,2;1 \right)\) không thuộc đồ thị hàm số $y=10{{x}^{2}}$.
Thay $x=0,2$ vào hàm số \(y=25{{x}^{2}}\), ta được: $y=25.0,{{2}^{2}}=1$ nên \(A\left( 0,2;1 \right)\) thuộc đồ thị hàm số \(y=25{{x}^{2}}\).
Thay $x=0,2$ vào hàm số \(y=\frac{1}{25}{{x}^{2}}\), ta được: $y=\frac{1}{25}.0,{{2}^{2}}=\frac{1}{625}$ nên \(A\left( 0,2;1 \right)\) không thuộc đồ thị hàm số \(y=\frac{1}{25}{{x}^{2}}\).
Vậy điểm \(A\left( 0,2;1 \right)\) thuộc đồ thị hàm số \(y=25{{x}^{2}}\).
b) Vì hàm số \(y=-\sqrt{3}{{x}^{2}}\) có hệ số $a=-\sqrt{3}<0$ nên các điểm thuộc đồ thị hàm số có tung độ nhỏ hơn 0, do đó các điểm \(B\left( -2;4\sqrt{3} \right)\); \(E\left( 0,4\sqrt{3};0,2 \right)\) không thuộc đồ thị hàm số.
+ Thay $x=-2$ vào hàm số \(y=-\sqrt{3}{{x}^{2}}\), ta được: $y=-\sqrt{3}.{{\left( -2 \right)}^{2}}=-4\sqrt{3}$ nên \(C\left( -2;-4\sqrt{3} \right)\) thuộc đồ thị hàm số \(y=-\sqrt{3}{{x}^{2}}\).
+ Thay $x=-0,2$ vào hàm số \(y=-\sqrt{3}{{x}^{2}}\), ta được: $y=-\sqrt{3}.{{\left( -0,2 \right)}^{2}}=-\frac{\sqrt{3}}{25}=-0,04\sqrt{3}\ne -0,4\sqrt{3}$ nên \(D\left( -0,2;-0,4\sqrt{3} \right)\) không thuộc đồ thị hàm số \(y=-\sqrt{3}{{x}^{2}}\).
Vậy điểm \(C\left( -2;-4\sqrt{3} \right)\) thuộc đồ thị hàm số \(y=-\sqrt{3}{{x}^{2}}\).


- Giải bài 6 trang 58 sách bài tập toán 9 - Cánh diều tập 2
- Giải bài 7 trang 58 sách bài tập toán 9 - Cánh diều tập 2
- Giải bài 8 trang 58 sách bài tập toán 9 - Cánh diều tập 2
- Giải bài 9 trang 58 sách bài tập toán 9 - Cánh diều tập 2
- Giải bài 10 trang 58 sách bài tập toán 9 - Cánh diều tập 2
>> Xem thêm
Các bài khác cùng chuyên mục