Giải bài 5 trang 33 sách bài tập toán 12 - Chân trời sáng tạo


Cho hàm số \(y = {x^3} + 4{x^2} - 3x + 4\). Khi đó A. Hàm số đạt cực đại tại \(x = \frac{1}{3}\), giá trị cực đại là \(\frac{{94}}{{27}}\). B. Hàm số đạt cực đại tại \(x = - 3\), giá trị cực đại là 22. C. Hàm số đạt cực đại tại \(x = 0\), giá trị cực đại là 4. D. Hàm số không có cực đại.

Đề bài

Cho hàm số \(y = {x^3} + 4{x^2} - 3x + 4\). Khi đó

A. Hàm số đạt cực đại tại \(x = \frac{1}{3}\), giá trị cực đại là \(\frac{{94}}{{27}}\).

B. Hàm số đạt cực đại tại \(x =  - 3\), giá trị cực đại là 22.

C. Hàm số đạt cực đại tại \(x = 0\), giá trị cực đại là 4.

D. Hàm số không có cực đại.

Phương pháp giải - Xem chi tiết

Các bước để tìm cực trị của hàm số \(f\left( x \right)\):

Bước 1. Tìm tập xác định \(D\) của hàm số.

Bước 2. Tính đạo hàm \(f'\left( x \right)\) của hàm số. Tìm các điểm \({x_1},{x_2},...,{x_n} \in D\) mà tại đó đạo hàm \(f'\left( x \right)\) bằng 0 hoặc không tồn tại.

Bước 3. Sắp xếp các điểm \({x_1},{x_2},...,{x_n}\) theo thứ tự tăng dần, xét dấu \(f'\left( x \right)\) và lập bảng biến thiên.

Bước 4. Nêu kết luận về cực trị của hàm số.

Lời giải chi tiết

Xét hàm số \(y = {x^3} + 4{x^2} - 3x + 4\).

Tập xác định: \(D = \mathbb{R}\).

Ta có \(y' = 3{x^2} + 8x - 3;y' = 0 \Leftrightarrow x = \frac{1}{3}\) hoặc \(x =  - 3\).

Bảng biến thiên:

Hàm số đạt cực đại tại $x=-3,{{y}_{CĐ}}=22$.

Chọn B.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 6 trang 34 sách bài tập toán 12 - Chân trời sáng tạo

    Đồ thị đạo hàm \(f'\left( x \right)\) của hàm số \(y = f\left( x \right)\) được cho trong Hình 2. Điểm cực tiểu của hàm số \(y = f\left( x \right)\) là A. \(x = - 3\). B. \(x = - 1\). C. \(x = 0\). D. \(x = 1\).

  • Giải bài 7 trang 34 sách bài tập toán 12 - Chân trời sáng tạo

    Đồ thị đạo hàm \(f'\left( x \right)\) của hàm số \(y = f\left( x \right)\) được cho trong Hình 3. Hàm số \(y = f\left( x \right)\) đồng biến trên các khoảng A. \(\left( { - 4; - 2} \right)\) và \(\left( { - 2;2} \right)\). B. \(\left( { - 2;0} \right)\). C. \(\left( { - 4; - 3} \right)\) và \(\left( { - 1;2} \right)\). D. \(\left( { - 3; - 1} \right)\) và \(\left( {1;2} \right)\).

  • Giải bài 8 trang 34 sách bài tập toán 12 - Chân trời sáng tạo

    Cho hàm số \(y = {x^3} - 12{\rm{x}} + 6\). Giá trị lớn nhất của hàm số trên đoạn \(\left[ { - 3;3} \right]\) là A. 6. B. 15. C. 17. D. 22.

  • Giải bài 9 trang 34 sách bài tập toán 12 - Chân trời sáng tạo

    Cho hàm số \(y = \frac{{{x^2} - 2{\rm{x}} + 6}}{{x + 1}}\). A. Đồ thị hàm số có một tiệm cận xiên là \(y = x - 3\). B. Đồ thị hàm số có một tiệm cận xiên là \(y = x + 3\). C. Đồ thị hàm số có một tiệm cận xiên là \(y = x + 1\). D. Đồ thị hàm số không có tiệm cận xiên.

  • Giải bài 10 trang 34 sách bài tập toán 12 - Chân trời sáng tạo

    Đồ thị hàm số \(y = \frac{{ - 4{\rm{x}} + 3}}{{2{\rm{x}} + 2}}\) có tâm đối xứng là điểm: A. \(\left( { - 1; - 2} \right)\). B. \(\left( { - 2; - 1} \right)\). C. \(\left( { - 1; - 1} \right)\). D. \(\left( { - 2; - 2} \right)\).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí