Giải bài 5 trang 18 vở thực hành Toán 8>
Rút gọn biểu thức sau đây để thấy
Đề bài
Rút gọn biểu thức sau đây để thấy rằng giá trị của nó không phụ thuộc vào giá trị của biến: \(\left( {x-5} \right)\left( {2x + 3} \right)-2x\left( {x-3} \right) + x + 7\).
Phương pháp giải - Xem chi tiết
Sử dụng quy tắc nhân đa thức để rút gọn biểu thức.
Lời giải chi tiết
\(\begin{array}{*{20}{l}}{\left( {x-5} \right)\left( {2x + 3} \right)-2x\left( {x-3} \right) + x + 7}\\{ = x.2x-2x.5 + 3.x-5.3 - 2x.x + 2x.3 + x + 7}\\{ = 2{x^2}\;-\;10x + 3x-15 - \;2{x^2}\; + 6x + x + 7}\\{ = \left( {2{x^2}\;-2{x^2}} \right) + (-10x + 3x + 6x + x) + \left( {-15 + 7} \right) = -8.}\end{array}\)
Vậy giá trị của \(\left( {x-5} \right)\left( {2x + 3} \right)-2x\left( {x-3} \right) + x + 7\) luôn bằng −8, không phụ thuộc vào x.
- Giải bài 6 trang 18 vở thực hành Toán 8
- Giải bài 7 trang 18 vở thực hành Toán 8
- Giải bài 4 trang 18 vở thực hành Toán 8
- Giải bài 3 trang 17 vở thực hành Toán 8
- Giải bài 2 trang 17 vở thực hành Toán 8
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay