Giải bài 4 trang 18 vở thực hành Toán 8>
Làm tính nhân:
Đề bài
Làm tính nhân:
a) \(\left( {{x^2}\;-xy + 1} \right)\left( {xy + 3} \right)\).
b) \(\left( {{x^2}{y^2} - \frac{1}{2}xy + 2} \right)\left( {x - 2y} \right)\).
Phương pháp giải - Xem chi tiết
Sử dụng quy tắc nhân hai đa thức: Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
Lời giải chi tiết
a)
\(\begin{array}{*{20}{l}}{\left( {{x^2}\;-xy + 1} \right)\left( {xy + 3} \right)}\\{ = \left( {{x^2}\;-xy + 1} \right).xy + \left( {{x^2}\;-xy + 1} \right).3}\\{ = {x^3}y-{x^2}{y^2}\; + xy + 3{x^2}\;-3xy + 3}\\{ = {x^3}y-{x^2}{y^2}\; + \left( {xy-3xy} \right) + 3{x^2}\; + 3}\\{ = {x^3}y-{x^2}{y^2}\;-2xy + 3{x^2}\; + 3.}\end{array}\)
b)
\(\begin{array}{l}\left( {{x^2}{y^2} - \frac{1}{2}xy + 2} \right)\left( {x - 2y} \right)\\ = \left( {{x^2}{y^2} - \frac{1}{2}xy + 2} \right).x - \left( {{x^2}{y^2} - \frac{1}{2}xy + 2} \right).2y\\ = {x^2}{y^2}.x - \frac{1}{2}xy.x + 2x - {x^2}{y^2}.2y + \frac{1}{2}xy.2y - 2.2y\\ = {x^3}{y^2} - \frac{1}{2}{x^2}y + 2x - 2{x^2}{y^3} + x{y^2} - 4y.\end{array}\)
- Giải bài 5 trang 18 vở thực hành Toán 8
- Giải bài 6 trang 18 vở thực hành Toán 8
- Giải bài 7 trang 18 vở thực hành Toán 8
- Giải bài 3 trang 17 vở thực hành Toán 8
- Giải bài 2 trang 17 vở thực hành Toán 8
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay