Giải bài 2 trang 17 vở thực hành Toán 8>
Tìm tích của đơn thức với đa thức:
Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Khoa học tự nhiên
Đề bài
Tìm tích của đơn thức với đa thức:
a) \(\left( { - 0,5} \right)x{y^{2\;}}\left( {2xy-{x^2}\; + 4y} \right)\).
b) \(\left( {{x^3}y - \frac{1}{2}{x^2} + \frac{1}{3}xy} \right)6x{y^3}\).
Phương pháp giải - Xem chi tiết
Sử dụng quy tắc nhân đơn thức với đa thức: Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau.
Lời giải chi tiết
a)
\(\begin{array}{l}\left( { - 0,5} \right)x{y^{2\;}}\left( {2xy-{x^2}\; + 4y} \right)\\ = \left( { - 0,5} \right)x{y^{2\;}}.2xy + \left( { - 0,5} \right)x{y^{2\;}}.\left( {-{x^2}\;} \right) + \left( { - 0,5} \right)x{y^{2\;}}.4y\\ = \left( { - 0,5.2} \right).\left( {x.x} \right).\left( {{y^2}.y} \right) + \left[ {\left( { - 0,5} \right).\left( { - 1} \right)} \right].\left( {x.{x^2}} \right).{y^2} + \left( { - 0,5.4} \right).x.\left( {{y^2}.y} \right)\\ = - {x^2}{y^3}\; + 0,5{x^3}{y^{2\;}}-\;2x{y^3}\end{array}\)
b)
\(\begin{array}{l}\left( {{x^3}y - \frac{1}{2}{x^2} + \frac{1}{3}xy} \right)6x{y^3}\\ = {x^3}y.6x{y^3} - \frac{1}{2}{x^2}.6x{y^3} + \frac{1}{3}xy.6x{y^3}\\ = 6.\left( {{x^3}.x} \right).\left( {y.{y^3}} \right) + \left( { - \frac{1}{2}.6} \right).\left( {{x^2}.x} \right).{y^3} + \left( {\frac{1}{3}.6} \right)\left( {x.x} \right)\left( {y.{y^3}} \right)\\ = 6{x^4}{y^4} - 3{x^3}{y^3} + 2{x^2}{y^4}\end{array}\)
- Giải bài 3 trang 17 vở thực hành Toán 8
- Giải bài 4 trang 18 vở thực hành Toán 8
- Giải bài 5 trang 18 vở thực hành Toán 8
- Giải bài 6 trang 18 vở thực hành Toán 8
- Giải bài 7 trang 18 vở thực hành Toán 8
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay