Giải bài 4.30 trang 18 sách bài tập toán 12 - Kết nối tri thức


Một trận dịch lây lan đến mức sau khi bùng phát t tuần số người nhiễm bệnh là ({N_1}left( t right) = 0,1{t^2} + 0,5t + 150,0 le t le 50). Hai mươi lăm tuần sau khi dịch bệnh bùng phát, một loại vắc xin đã được phát triển và tiêm cho công chúng. Khi đó, số người nhiễm bệnh được điều chỉnh theo mô hình ({N_2}left( t right) = - 0,2{t^2} + 6t + 200,25 le t le 50). a) Tìm thời điểm t để sau khi tiêm vắc xin thì dịch bệnh kết thúc, tức là số người nhiễm bệnh là ({N_2}left( t right)

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Một trận dịch lây lan đến mức sau khi bùng phát t tuần số người nhiễm bệnh là

\({N_1}\left( t \right) = 0,1{t^2} + 0,5t + 150,0 \le t \le 50\).

Hai mươi lăm tuần sau khi dịch bệnh bùng phát, một loại vắc xin đã được phát triển và tiêm cho công chúng. Khi đó, số người nhiễm bệnh được điều chỉnh theo mô hình

\({N_2}\left( t \right) =  - 0,2{t^2} + 6t + 200,25 \le t \le 50\).

a) Tìm thời điểm t để sau khi tiêm vắc xin thì dịch bệnh kết thúc, tức là số người nhiễm bệnh là \({N_2}\left( t \right) = 0\).

b) Ước tính gần đúng số người mà vắc xin đã ngăn ngừa khỏi dịch bệnh trong thời gian xảy ra dịch bệnh.

Phương pháp giải - Xem chi tiết

Ý a: t là nghiệm của phương trình \({N_2}\left( t \right) = 0\) với \(25 \le t \le 50\).

Ý b: Tính \(\int\limits_{25}^{50} {\left[ {{N_1}\left( t \right) - {N_2}\left( t \right)} \right]dt} \)

Lời giải chi tiết

a) Xét phương trình \({N_2}\left( t \right) = 0 \Leftrightarrow  - 0,2{t^2} + 6t + 200 = 0 \Leftrightarrow t = 50\) (thỏa mãn) hoặc \(t =  - 20\) (không thỏa mãn). Do đó sau 50 tuần thì dịch bệnh kết thúc.

b) Như vậy khi có vắc xin tiêm cho công chúng từ tuần thứ 25 tới tuần thứ 50 thì kết thúc dịch (theo mô hình chỉ ra).

Số người mà vắc xin đã ngăn ngừa khỏi dịch bệnh trong thời gian xảy ra dịch bệnh là

\(\int\limits_{25}^{50} {\left( {{N_1} - {N_2}} \right)dt = } \int\limits_{25}^{50} {\left( {0,3{t^2} - 5,5t - 50} \right)dt = } \left. {\left( {0,1{t^3} - 5,5 \cdot \frac{{{t^2}}}{2} - 50t} \right)} \right|_{25}^{50} \approx 4531\). 


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí