Giải bài 4.29 trang 18 sách bài tập toán 12 - Kết nối tri thức


Doanh thu từ một quy trình sản xuất (tính bằng triệu đô la mỗi năm) được dự kiến sẽ tuân theo mô hình (R = 100 + 0,08t) trong 10 năm. Trong cùng khoảng thời gian đó, chi phí (tính bằng triệu đô la mỗi năm) được dự kiến sẽ tuân theo mô hình (C = 60 + 0,2{t^2}), trong đó t là thời gian (tính bằng năm). Ước tính lợi nhuận trong khoảng thời gian 10 năm.

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Doanh thu từ một quy trình sản xuất (tính bằng triệu đô la mỗi năm) được dự kiến sẽ tuân theo mô hình \(R = 100 + 0,08t\) trong 10 năm. Trong cùng khoảng thời gian đó, chi phí (tính bằng triệu đô la mỗi năm) được dự kiến sẽ tuân theo mô hình \(C = 60 + 0,2{t^2}\), trong đó t là thời gian (tính bằng năm).

Ước tính lợi nhuận trong khoảng thời gian 10 năm.

Phương pháp giải - Xem chi tiết

Doanh thu và chi phí dự kiến trong 10 năm lần lượt là \(\int\limits_0^{10} {Rdt} \) và \(\int\limits_0^{10} {Cdt} \), lợi nhuận bằng doanh thu trừ chi phí.

Lời giải chi tiết

Doanh thu dự kiến trong 10 năm là

\(\int\limits_0^{10} {\left( {100 + 0,08t} \right)dt}  = \left. {\left( {100t + 0,04{t^2}} \right)} \right|_0^{10} = 100 \cdot 10 + 0,04 \cdot {10^2} = 1004\) (triệu đô la).

Chi phí dự kiến trong 10 năm là

\(\int\limits_0^{10} {\left( {60 + 0,2{t^2}} \right)dt}  = \left. {\left( {60t + 0,1{t^2}} \right)} \right|_0^{10} = 60 \cdot 10 + 0,1 \cdot {10^2} = 610\) (triệu đô la).

Lợi nhuận ước tính trong 10 năm là

\(1004 - 610 = 394\) (triệu đô la).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí