Giải bài 4 trang 65 SGK Toán 8 – Cánh diều


Cho tam giác ABC nhọn có H là trực tâm. Gọi M, N, P, Q lần lượt là trung điểm của các đoạn thẳng

Đề bài

Cho tam giác ABC nhọn có H là trực tâm. Gọi M, N, P, Q lần lượt là trung điểm của các đoạn thẳng AB, BH, HC, CA. Chứng minh tứ giác MNPQ là hình chữ nhật.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng định lý đường trung bình và dấu hiệu nhận biết của hình chữ nhật để chứng minh bài toán

Lời giải chi tiết

Vì M, N lần lượt là trung điểm của các đoạn thẳng AB, BH nên ta có:

MN là đường trung bình tam giác ABH \( \Rightarrow MN//AH\) mà \(AH \bot BC\) nên \(MN \bot BC\) (1)

Vì P, Q lần lượt là trung điểm của các đoạn thẳng CH, AC nên ta có:

PQ là đường trung bình tam giác AHC \( \Rightarrow PQ//AH\) mà \(AH \bot BC\) nên \(QP \bot BC\) (2)

Vì P, N lần lượt là trung điểm của các đoạn thẳng CH, BH nên ta có:

PN là đường trung bình tam giác BHC \( \Rightarrow PN//BC\) mà \(AH \bot BC\) nên \(PN \bot AH\)(3)

Vì M, Q lần lượt là trung điểm của các đoạn thẳng AB, AC nên ta có:

MQ là đường trung bình tam giác ABC \( \Rightarrow MQ//BC\) mà \(AH \bot BC\) nên \(MQ \bot AH\)(4)

Từ (1), (2), (3), (4) ta có \(\widehat {MNP} = \widehat {NPQ} = \widehat {PQM} = \widehat {QMN} = 90^\circ \)

Vậy tứ giác MNPQ là hình chữ nhật (dhnb).


Bình chọn:
3.9 trên 8 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí