Giải bài 4 trang 64 sách bài tập toán 12 - Chân trời sáng tạo


Cho hai điểm (Mleft( {1; - 1;5} right)) và (Nleft( {0;0;1} right)). Viết phương trình mặt phẳng (left( Q right)) chứa (M,N) và song song với trục (Oy).

Đề bài

Cho hai điểm \(M\left( {1; - 1;5} \right)\) và \(N\left( {0;0;1} \right)\). Viết phương trình mặt phẳng \(\left( Q \right)\) chứa \(M,N\) và song song với trục \(Oy\).

Phương pháp giải - Xem chi tiết

Lập phương trình tổng quát của mặt phẳng \(\left( \alpha  \right)\) đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và biết cặp vectơ chỉ phương \(\overrightarrow a ,\overrightarrow b \):

Bước 1: Tìm một vectơ pháp tuyến \(\overrightarrow n  = \left[ {\overrightarrow a ,\overrightarrow b } \right]\).

Bước 2: Lập phương trình mặt phẳng \(\left( \alpha  \right)\) đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ pháp tuyến \(\overrightarrow n \).

Lời giải chi tiết

Ta có: \(\overrightarrow {MN}  = \left( { - 1;1; - 4} \right)\), trục \(Oy\) có vectơ chỉ phương \(\overrightarrow j  = \left( {0;1;0} \right)\).

\(\left[ {\overrightarrow {MN} ,\overrightarrow j } \right] = \left( {\left( { - 1} \right).0 - \left( { - 4} \right).1;\left( { - 4} \right).0 - \left( { - 1} \right).0;\left( { - 1} \right).1 - 1.0} \right) = \left( {4;0; - 1} \right)\).

Vậy \(\overrightarrow n  = \left( {4;0; - 1} \right)\) là một vectơ pháp tuyến của \(\left( Q \right)\).

Phương trình mặt phẳng \(\left( Q \right)\) là: \(4\left( {x - 0} \right) + 0\left( {y - 0} \right) - 1\left( {z - 1} \right) = 0\) hay \(4{\rm{x}} - z + 1 = 0\).


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 5 trang 65 sách bài tập toán 12 - Chân trời sáng tạo

    Trong không gian (Oxyz) (đơn vị trên các trục toạ độ là centimét), đầu in phun của một máy in 3D đang đặt tại điểm (Mleft( {5;0;35} right)). Tính khoảng cách từ đầu in phun đến khay đặt vật in có phương trình (z - 5 = 0).

  • Giải bài 6 trang 65 sách bài tập toán 12 - Chân trời sáng tạo

    Cho hai đường thẳng ({d_1}:left{ begin{array}{l}x = t\y = - 1 - 4t\z = 6 + 6tend{array} right.) và đường thẳng ({d_2}:frac{x}{2} = frac{{y - 1}}{1} = frac{{z + 2}}{{ - 5}}). Viết phương trình chính tắc của đường thẳng (Delta ) đi qua (Aleft( {1; - 1;2} right)), đồng thời vuông góc với cả hai đường thẳng ({d_1},{d_2}).

  • Giải bài 7 trang 65 sách bài tập toán 12 - Chân trời sáng tạo

    Cho đường thẳng (d:left{ begin{array}{l}x = 1 + t\y = 2t\z = - 1end{array} right.), điểm (Mleft( {1;2;1} right)) và mặt phẳng (left( P right):2x + y - 2z - 1 = 0). Viết phương trình đường thẳng (Delta ) đi qua (M), song song với (left( P right)) và vuông góc với ({rm{d}}).

  • Giải bài 8 trang 65 sách bài tập toán 12 - Chân trời sáng tạo

    Cho các điểm \(A\left( {2;0;0} \right),B\left( {0;4;0} \right);C\left( {0;0;4} \right)\). Viết phương trình mặt cầu ngoại tiếp tứ diện \(OABC\) (\(O\) là gốc toạ độ).

  • Giải bài 9 trang 65 sách bài tập toán 12 - Chân trời sáng tạo

    Cho mặt cầu (left( S right):{left( {x - 1} right)^2} + {left( {y - 3} right)^2} + {left( {z + 7} right)^2} = 1). Tìm toạ độ các điểm (M,N) là chân đường vuông góc vẽ từ tâm (I) của (left( S right)) đến các trục toạ độ (Oy) và (Oz).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí