Giải bài 39 trang 73 sách bài tập toán 9 - Cánh diều tập 2>
Không tính ∆, giải các phương trình: a) \(- 3{x^2} + 2\sqrt 5 x + 3 + 2\sqrt 5 = 0\) b) \(\frac{1}{3}{x^2} - \frac{7}{{12}}x + \frac{1}{4} = 0\) c) \(7{x^2} + \left( {3m - 1} \right)x + 3m - 8 = 0\)
Đề bài
Không tính ∆, giải các phương trình:
a) \(- 3{x^2} + 2\sqrt 5 x + 3 + 2\sqrt 5 = 0\)
b) \(\frac{1}{3}{x^2} - \frac{7}{{12}}x + \frac{1}{4} = 0\)
c) \(7{x^2} + \left( {3m - 1} \right)x + 3m - 8 = 0\)
Phương pháp giải - Xem chi tiết
Áp dụng phương pháp nhẩm nghiệm:
- Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(a + b + c = 0\) thì phương trình có một nghiệm là \({x_1} = 1\) và nghiệm còn lại là \({x_2} = \frac{c}{a}.\)
- Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(a - b + c = 0\) thì phương trình có một nghiệm là \({x_1} = - 1\) và nghiệm còn lại là \({x_2} = - \frac{c}{a}.\)
Lời giải chi tiết
a) \( - 3{x^2} + 2\sqrt 5 x + 3 + 2\sqrt 5 = 0\)
Phương trình có các hệ số: \(a = - 3;b = 2\sqrt 5 ;c = 3 + 2\sqrt 5 \)
Ta thấy \(a - b + c = - 3 - 2\sqrt 5 + 3 + 2\sqrt 5 = 0\) nên phương trình có 2 nghiệm:
\({x_1} = - 1;{x_2} = \frac{{ - 3 - 2\sqrt 5 }}{{ - 3}} = \frac{{3 + 2\sqrt 5 }}{3}\)
b) \(\frac{1}{3}{x^2} - \frac{7}{{12}}x + \frac{1}{4} = 0\)
Phương trình có các hệ số: \(a = \frac{1}{3};b = \frac{{ - 7}}{{12}};c = \frac{1}{4}\)
Ta thấy \(a + b + c = \frac{1}{3} - \frac{7}{{12}} + \frac{1}{4} = 0\) nên phương trình có 2 nghiệm:
\({x_1} = 1;{x_2} = \frac{1}{4}:\frac{1}{3} = \frac{3}{4}\)
c) \(7{x^2} + \left( {3m - 1} \right)x + 3m - 8 = 0\)
Phương trình có các hệ số: \(a = 7;b = 3m - 1;c = 3m - 8\)
Ta thấy \(a - b + c = 7 - 3m + 1 + 3m - 8 = 0\) nên phương trình có 2 nghiệm:
\({x_1} = - 1;{x_2} = \frac{{8 - 3m}}{7}\)
- Giải bài 40 trang 73 sách bài tập toán 9 - Cánh diều tập 2
- Giải bài 41 trang 73 sách bài tập toán 9 - Cánh diều tập 2
- Giải bài 42 trang 73 sách bài tập toán 9 - Cánh diều tập 2
- Giải bài 43 trang 74 sách bài tập toán 9 - Cánh diều tập 2
- Giải bài 44 trang 74 sách bài tập toán 9 - Cánh diều tập 2
>> Xem thêm
Các bài khác cùng chuyên mục