Giải bài 38 trang 73 sách bài tập toán 9 - Cánh diều tập 2>
Giải các phương trình a) (left( {sqrt 2 - 1} right){x^2} + x = 0) b) (9{x^2} - 17x + 4 = 0) c) ( - {x^2} + 5,5x = 2{x^2} - 3,3x + 4,84) d) (left( {sqrt 3 - 5} right){x^2} + 3x + 4 = sqrt 3 {x^2} - 1)
Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Cánh diều
Toán - Văn - Anh - KHTN - Lịch sử và Địa lí
Đề bài
Giải các phương trình
a) \(\left( {\sqrt 2 - 1} \right){x^2} + x = 0\)
b) \(9{x^2} - 17x + 4 = 0\)
c) \( - {x^2} + 5,5x = 2{x^2} - 3,3x + 4,84\)
d) \(\left( {\sqrt 3 - 5} \right){x^2} + 3x + 4 = \sqrt 3 {x^2} - 1\)
Phương pháp giải - Xem chi tiết
a) Nhóm nhân tử chung để đưa về phương trình tích.
b) Dùng công thức nghiệm.
c), d) Biến đổi để đưa về dạng phương trình bậc hai một ẩn rồi dùng công thức nghiệm.
Lời giải chi tiết
a) \(\left( {\sqrt 2 - 1} \right){x^2} + x = 0\)
\(x\left( {\left( {\sqrt 2 - 1} \right)x + 1} \right) = 0\)
\(x = 0\) hoặc \(\left( {\sqrt 2 - 1} \right)x + 1 = 0\)
\(x = 0\) hoặc \(x = \frac{1}{{1 - \sqrt 2 }}\)
\(x = 0\) hoặc \(x = - 1 - \sqrt 2 \)
Vậy phương trình có nghiệm \(x = 0\);\(x = - 1 - \sqrt 2 \)
b) \(9{x^2} - 17x + 4 = 0\)
Phương trình có các hệ số \(a = 9;b = - 17;c = 4\)
Ta có \(\Delta = {\left( { - 17} \right)^2} - 4.9.4 = 145 > 0\). Vì \(\Delta > 0\) nên phương trình có 2 nghiệm phân biệt:
\({x_1} = \frac{{17 - \sqrt {145} }}{{18}};{x_1} = \frac{{17 + \sqrt {145} }}{{18}}\)
c) \( - {x^2} + 5,5x = 2{x^2} - 3,3x + 4,84\) hay \(3{x^2} - 8,8x + 4,84 = 0\)
Phương trình có các hệ số \(a = 3;b = - 8,8;c = 4,84\) nên \(b' = - 4,4\).
Ta có \(\Delta ' = {\left( { - 4,4} \right)^2} - 3.4,84 = 4,84 > 0\). Vì \(\Delta ' > 0\) nên phương trình có 2 nghiệm phân biệt:
\({x_1} = \frac{{4,4 - \sqrt {4,84} }}{3} = \frac{{11}}{{15}};{x_1} = \frac{{4,4 + \sqrt {4,84} }}{3} = \frac{{11}}{5}\)
d) \(\left( {\sqrt 3 - 5} \right){x^2} + 3x + 4 = \sqrt 3 {x^2} - 1\) hay \(5{x^2} - 3x - 5 = 0\)
Phương trình có các hệ số \(a = 5;b = - 3;c = - 5\)
Ta có \(\Delta = {\left( { - 3} \right)^2} - 4.5.\left( { - 5} \right) = 109 > 0\). Vì \(\Delta > 0\) nên phương trình có 2 nghiệm phân biệt:
\({x_1} = \frac{{3 - \sqrt {109} }}{{10}};{x_1} = \frac{{3 + \sqrt {109} }}{{10}}\)
- Giải bài 39 trang 73 sách bài tập toán 9 - Cánh diều tập 2
- Giải bài 40 trang 73 sách bài tập toán 9 - Cánh diều tập 2
- Giải bài 41 trang 73 sách bài tập toán 9 - Cánh diều tập 2
- Giải bài 42 trang 73 sách bài tập toán 9 - Cánh diều tập 2
- Giải bài 43 trang 74 sách bài tập toán 9 - Cánh diều tập 2
>> Xem thêm
Các bài khác cùng chuyên mục