Giải bài 3.3 trang 62 sách bài tập toán 12 - Kết nối tri thức


Kết quả thi thử của các thí sinh tại một trung tâm tiếng Anh được cho như sau a) Nêu các nhóm số liệu và tần số tương ứng. Giải thích thông tin của một nhóm số liệu. b) Tìm khoảng tứ phân vị cho mẫu số liệu ghép nhóm.

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Kết quả thi thử của các thí sinh tại một trung tâm tiếng Anh được cho như sau

a) Nêu các nhóm số liệu và tần số tương ứng. Giải thích thông tin của một nhóm số liệu.

b) Tìm khoảng tứ phân vị cho mẫu số liệu ghép nhóm.

Phương pháp giải - Xem chi tiết

Ý a: Quan sát bảng để thực hiện yêu cầu đề bài.

Ý b: Hiệu các nhóm để thu được bảng tần số ghép nhóm. Sau đó tính \({Q_1}\) và \({Q_3}\) để thu được \({\Delta _Q} = {Q_3} - {Q_1}\).

Lời giải chi tiết

a) Có 5 nhóm số liệu:

+ Nhóm 26-30 có tần số là 5.

+ Nhóm 31-35 có tần số là 15.

+ Nhóm 36-40 có tần số là 30.

+ Nhóm 41-45 có tần số là 20.

+ Nhóm 46-50 có tần số là 10.

Giải thích: Nhóm 26-30 có tần số là 5 nghĩa là có 5 thí sinh có điểm thi tiếng Anh thuộc tập \(\left\{ {26;27;28;29;30} \right\}\).

b) Hiệu chỉnh các nhóm ta thu được bảng tần số ghép nhóm như sau:

Cỡ mẫu là \(n = 5 + 15 + 30 + 20 + 10 = 80\).

Vị trí của \({Q_1}\) là \(\frac{n}{4} = 20\) suy ra nhóm chứa tứ phân vị thứ nhất là \(\left[ {30,5;35,5} \right)\).

Ta có \({Q_1} = 30,5 + \frac{{\frac{{1 \cdot 80}}{4} - 5}}{{15}} \cdot 5 = 35,5\). Tương tự  có vị trí của \({Q_3}\) là \(\frac{{3n}}{4} = 60\) suy ra nhóm chứa tứ phân vị thứ ba là \(\left[ {40,5;45,5} \right)\). Do đó \({Q_3} = 40,5 + \frac{{\frac{{3 \cdot 80}}{4} - 50}}{{20}} \cdot 5 = 43\).

Suy ra khoảng tứ phân vị là \({\Delta _Q} = {Q_3} - {Q_1} = 43 - 35,5 = 7,5\).


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 3.4 trang 62 sách bài tập toán 12 - Kết nối tri thức

    Bảng sau đây cho biết thành tích nhảy cao của các học sinh nam trong hai lớp 12A và 12B: Hỏi nên dùng khoảng biến thiên hay khoảng tứ phân vị để so sánh mức độ phân tán của hai mẫu số liệu ghép nhóm trên? Tại sao?

  • Giải bài 3.2 trang 62 sách bài tập toán 12 - Kết nối tri thức

    Một trang trại thử nghiệm nuôi một giống cá mới. Sau 6 tháng người ta thu hoạch cho kết quả như sau: a) Tìm khoảng tứ phân vị ({Delta _Q}) của mẫu số liệu ghép nhóm. b) Khoảng tứ phân vị của mẫu số liệu gốc có phụ thuộc vào cân nặng của 10 con cá có khối lượng nhỏ nhất không? Vì sao?

  • Giải bài 3.1 trang 62 sách bài tập toán 12 - Kết nối tri thức

    Cho mẫu số liệu ghép nhóm sau về chiều cao (tính từ mặt bầu cây) của 20 cây cam giống: a) Tìm khoảng biến thiên ({R_n}) cho mẫu số liệu ghép nhóm trên. b) Biết rằng trong 20 cây cam giống trên, cây cao nhất là 72 cm và cây thấp nhất là 46 cm. Tìm khoảng biến thiên ({R_g}) cho mẫu số liệu gốc. Để đo độ phân tán của mẫu số liệu về chiều cao 20 cây cam giống ta dùng ({R_n}) hay ({R_g}) sẽ chính xác hơn?

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí