Bài 3.21 trang 114 SBT hình học 12>
Giải bài 3.21 trang 114 sách bài tập hình học 12. Lập phương trình mặt phẳng đi qua hai điểm A(0; 1; 0) , B(2; 3; 1) và vuông góc với mặt phẳng : x + 2y – z = 0.
Đề bài
Lập phương trình mặt phẳng \((\alpha )\) đi qua hai điểm A(0; 1; 0) , B(2; 3; 1) và vuông góc với mặt phẳng \((\beta )\) : x + 2y – z = 0 .
Phương pháp giải - Xem chi tiết
Mặt phẳng đi qua hai điểm \(A,B\) và vuông góc \(\left( \beta \right)\) thì có VTPT là \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {{n_{\left( \beta \right)}}} } \right]\)
Lời giải chi tiết
Mặt phẳng \((\alpha )\) đi qua hai điểm A, B và vuông góc với mặt phẳng \((\beta )\):
x + 2y – z = 0.
Vậy hai vecto có giá song song hoặc nằm trên \((\alpha )\) là \(\overrightarrow {AB} = (2;2;1)\) và \(\overrightarrow {{n_\beta }} = (1;2; - 1)\)
Suy ra \((\alpha )\) có vecto pháp tuyến là: \(\overrightarrow {{n_\alpha }} =\left[ {\overrightarrow {AB} ,\overrightarrow {{n_\beta }} } \right] = ( - 4;3;2)\)
Vậy phương trình của \((\alpha )\) là: -4x + 3(y – 1) + 2z = 0 hay 4x – 3y – 2z + 3 = 0.
Loigiaihay.com
- Bài 3.22 trang 115 SBT hình học 12
- Bài 3.23 trang 115 SBT hình học 12
- Bài 3.24 trang 115 SBT hình học 12
- Bài 3.25 trang 115 SBT hình học 12
- Bài 3.26 trang 115 SBT hình học 12
>> Xem thêm