Giải bài 3 (7.14) trang 34 vở thực hành Toán 7 tập 2>
Cho hai đa thức (A = 6{x^4} - 4{x^3} + x - frac{1}{3}) và (B = - 3{x^4} - 2{x^3} - 5{x^2} + x + frac{2}{3}). Tính (A + B) và (A - B).
Đề bài
Cho hai đa thức \(A = 6{x^4} - 4{x^3} + x - \frac{1}{3}\) và \(B = - 3{x^4} - 2{x^3} - 5{x^2} + x + \frac{2}{3}\). Tính \(A + B\) và \(A - B\).
Phương pháp giải - Xem chi tiết
Để cộng (trừ) hai đa thức:
Cách 1: Viết hai đa thức trong dấu ngoặc và nối chúng bởi dấu “+” (hay “\( - \)”). Sau đó bỏ dấu ngoặc rồi nhóm các hạng tử cùng bậc và thu gọn.
Cách 2: Đặt tính cộng (trừ) sao cho các hạng tử cùng bậc của hai đa thức thì thẳng cột với nhau rồi cộng (trừ) theo từng cột.
Lời giải chi tiết
Cách thứ nhất:
Cách thứ hai:
\(A + B = \left( {6{x^4} - 4{x^3} + x - \frac{1}{3}} \right) + \left( { - 3{x^4} - 2{x^3} - 5{x^2} + x + \frac{2}{3}} \right)\)
\( = \left( {6{x^4} - 3{x^4}} \right) + \left( { - 4{x^3} - 2{x^3}} \right) - 5{x^2} + \left( {x + x} \right) + \left( { - \frac{1}{3} + \frac{2}{3}} \right)\)
\( = 3{x^4} - 6{x^3} - 5{x^2} + 2x + \frac{1}{3}\)
\(A - B = \left( {6{x^4} - 4{x^3} + x - \frac{1}{3}} \right) - \left( { - 3{x^4} - 2{x^3} - 5{x^2} + x + \frac{2}{3}} \right)\)
\( = 6{x^4} - 4{x^3} + x - \frac{1}{3} + 3{x^4} + 2{x^3} + 5{x^2} - x - \frac{2}{3}\)
\( = \left( {6{x^4} + 3{x^4}} \right) + \left( { - 4{x^3} + 2{x^3}} \right) + 5{x^2} + \left( {x - x} \right) + \left( { - \frac{1}{3} - \frac{2}{3}} \right)\)
\( = 9{x^4} - 2{x^3} + 5{x^2} - 1\)
- Giải bài 5 trang 35 vở thực hành Toán 7 tập 2
- Giải bài 6 (7.16) trang 35, 36 vở thực hành Toán 7 tập 2
- Giải bài 7 (7.17) trang 36 vở thực hành Toán 7 tập 2
- Giải bài 2 (7.13) trang 34 vở thực hành Toán 7 tập 2
- Giải bài 1 (7.12) trang 33, 34 vở thực hành Toán 7 tập 2
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay