Giải bài 25 trang 75 sách bài tập toán 12 - Cánh diều


Cho hai vectơ và (overrightarrow v = left( {1;1;5} right)). Hãy chỉ ra toạ độ của một vectơ (overrightarrow {rm{w}} ) vuông góc với cả hai vectơ (overrightarrow u ) và (overrightarrow v ).

Đề bài

Cho hai vectơ  và \(\overrightarrow v  = \left( {1;1;5} \right)\). Hãy chỉ ra toạ độ của một vectơ \(\overrightarrow {\rm{w}} \) vuông góc với cả hai vectơ \(\overrightarrow u \) và \(\overrightarrow v \).

Phương pháp giải - Xem chi tiết

‒ Sử dụng công thức tính tích có hướng của hai vectơ \(\overrightarrow u  = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v  = \left( {{x_2};{y_2};{z_2}} \right)\):

\(\left[ {\overrightarrow u ,\overrightarrow v } \right] = \left( {{y_1}{z_2} - {y_2}{z_1};{z_1}{x_2} - {z_2}{x_1};{x_1}{y_2} - {x_2}{y_1}} \right)\).

Lời giải chi tiết

\(\overrightarrow {\rm{w}}  = \left[ {\overrightarrow u ,\overrightarrow v } \right] = \left( {\left( { - 2} \right).5 - \left( { - 5} \right).1;\left( { - 5} \right).1 - 3.5;3.1 - \left( { - 2} \right).1} \right) = \left( { - 5; - 20;5} \right)\).

Vậy \(\overrightarrow {\rm{w}}  = \left( { - 5; - 20;5} \right)\) vuông góc với cả hai vectơ \(\overrightarrow u \) và \(\overrightarrow v \).


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 26 trang 75 sách bài tập toán 12 - Cánh diều

    Trong không gian với hệ toạ độ (Oxyz), cho (Mleft( {2;2; - 2} right),Nleft( { - 3;5;1} right),Pleft( {1; - 1; - 2} right)). a) Chứng minh rằng ba điểm (M,N,P) không thẳng hàng. b) Tính chu vi tam giác (MNP). c) Tính (cos widehat {NMP}).

  • Giải bài 27 trang 75 sách bài tập toán 12 - Cánh diều

    Rađa của một trung tâm kiểm soát không lưu sân bay có phạm vi theo dõi 500 km. Chọn hệ trục toạ độ (Oxyz) với gốc (O) trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng (left( {Oxy} right)) trùng với mặt đất, trục (Ox) hướng về phía tây, trục (Oy) hướng về phía nam và trục (Oz) hướng thẳng đứng lên trời như Hình 18, trong đó đơn vị trên mỗi trục tính theo kilômét. Hỏi rađa trung tâm kiểm soát không lưu có thể phát hiện được máy bay tại vị trí (A) có toạ độ (left( {

  • Giải bài 24 trang 74 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Trong không gian với hệ toạ độ (Oxyz), cho (Aleft( {1;2; - 1} right),Bleft( {2; - 1;3} right),Cleft( { - 4;7;5} right)). a) Toạ độ của (overrightarrow {AB} = left( {1; - 3;4} right),overrightarrow {AC} = left( { - 5;5;6} right)). b) (AB = left| {overrightarrow {AB} } right| = sqrt {{1^2} + {{left( { - 3} right)}^2} + {4^2}} = sqrt {26} ,AC = left| {overrightarrow {AC} } right| = sqrt {{{left(

  • Giải bài 23 trang 74 sách bài tập toán 12 - Cánh diều

    Trong không gian với hệ toạ độ (Oxyz), cho (overrightarrow a = left( {0;2;2} right)) và (overrightarrow b = left( {3; - 3;0} right)). Góc giữa hai vectơ (overrightarrow a ) và (overrightarrow b ) bằng A. 9. B. 3. C. 5. D. 4.

  • Giải bài 22 trang 74 sách bài tập toán 12 - Cánh diều

    Trong không gian với hệ toạ độ (Oxyz), cho điểm (Aleft( { - 2; - 1;4} right)) và (Bleft( {1; - 3; - 1} right)). Độ dài đoạn thẳng (AB) bằng: A. (sqrt {26} ). B. (sqrt {22} ). C. (sqrt {38} ). D. (sqrt {34} ).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Cánh diều - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí