Giải bài 1 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo>
Xác định các tập hợp A hợp B và A giao B với a) A = {đỏ; cam; vàng; lục; lam}, B = {lục; làm; chàm; tím}. b) A là tập hợp các tam giác đều, B là tập hợp các tam giác cân.
Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Xác định các tập hợp \(A \cup B\) và \(A \cap B\) với
a) A = {đỏ; cam; vàng; lục; lam}, B = {lục; lam; chàm; tím}.
b) A là tập hợp các tam giác đều, B là tập hợp các tam giác cân.
Phương pháp giải - Xem chi tiết
\(A \cup B = \{ x|x \in A\) hoặc \(x \in B\} \)
\(A \cap B = \{ x|x \in A\) và \(x \in B\} \).
Lời giải chi tiết
a) A = {đỏ; cam; vàng; lục; lam}, B = {lục; lam; chàm; tím}.
\(A \cup B = \){đỏ; cam; vàng; lục; lam; chàm; tím}
\(A \cap B = \){lục; lam}
b) Vì mỗi tam giác đều cũng là một tam giác cân nên \(A \subset B.\)
\(A \cup B = B,\;A \cap B = A.\)
Chú ý
Nếu \(A \subset B\) thì \(A \cup B = B,\;A \cap B = A.\)
- Giải bài 2 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 3 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 4 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 5 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 6 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Nhị thức Newton - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Quy tắc cộng và quy tắc nhân - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Phương trình quy về phương trình bậc hai - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Giải bất phương trình bậc hai một ẩn - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Nhị thức Newton - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Quy tắc cộng và quy tắc nhân - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Phương trình quy về phương trình bậc hai - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Giải bất phương trình bậc hai một ẩn - SGK Toán 10 Chân trời sáng tạo