Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 1. Các hàm số lượng giác
Câu 5 trang 14 SGK Đại số và Giải tích 11 Nâng cao>
Trong các khẳng định sau, khẳng định nào đúng ? Khẳng định nào sai ? Giải thích vì sao ?
Đề bài
Trong các khẳng định sau, khẳng định nào đúng ? Khẳng định nào sai ? Giải thích vì sao?
a. Trên mỗi khoảng mà hàm số \(y = \sin x\) đồng biến thì hàm số \(y = \cos x\) nghịch biến.
b. Trên mỗi khoảng mà hàm số \(y = \sin^2 x\) đồng biến thì hàm số \(y = \cos^2 x\) nghịch biến.
Lời giải chi tiết
a. Sai vì trên khoảng \(\left( { - {\pi \over 2};{\pi \over 2}} \right)\) hàm số \(y = \sin x\) đồng biến nhưng hàm số \(y = \cos x\) không nghịch biến.
b. Đúng do \({\sin ^2}x + {\cos ^2}x = 1\)
Giả sử \(y = \sin^2 x\) đồng biến trên khoảng \(I\), khi đó với \(x_1,x_2\in I\) và \(x_1<x_2\) thì \({\sin ^2}{x_1}< {\sin ^2}{x_2}\)
\( \Rightarrow 1 - {\sin ^2}{x_1} > 1 - {\sin ^2}{x_2}\)
\(\Rightarrow {\cos ^2}{x_1} > {\cos ^2}{x_2}\)
\(⇒ y = \cos^2 x\) nghịch biến trên \(I\).
Loigiaihay.com




