Bài 1.8 trang 21 SGK Toán 11 tập 1 - Kết nối tri thức>
Tính: a) (cos left( {a + frac{pi }{6}} right)), biết (sin a = frac{1}{{sqrt 3 }}) và (frac{pi }{2} < a < pi );
Đề bài
Tính:
a) \(\cos \left( {a + \frac{\pi }{6}} \right)\), biết \(\sin a = \frac{1}{{\sqrt 3 }}\) và \(\frac{\pi }{2} < a < \pi \);
b) \(\tan \left( {a - \frac{\pi }{4}} \right)\), biết \(\cos a = - \frac{1}{3}\) và \(\pi < a < \frac{{3\pi }}{2}\).
Phương pháp giải - Xem chi tiết
- Từ hệ thức lượng giác cơ bản là mối liên hệ giữa hai giá trị lượng giác, khi biết một giá trị lượng giác ta sẽ suy ra được giá trị còn lại. Cần lưu ý tời dấu của giá trị lượng giác để chọn cho phù hợp
- Sử dụng các hằng đẳng thức đáng nhớ.
Lời giải chi tiết
a) Ta có: \(\cos^2 a = 1 - {{\sin }^2}a = 1 - \frac{1}{3} = \frac{2}{3} \).
Vì \(\frac{\pi }{2} < a < \pi \) nên \(\cos a < 0\). Do đó \( \cos a\ = - \frac{{\sqrt 6 }}{3}\).
Ta có: \(\cos \left( {a + \frac{\pi }{6}} \right) = \cos a\cos \frac{\pi }{6} - \sin a\sin \frac{\pi }{6} = - \frac{{\sqrt 6 }}{3}.\frac{{\sqrt 3 }}{2} - \frac{1}{{\sqrt 3 }}.\frac{1}{2} = - \frac{{\sqrt 3 + 3\sqrt 2 }}{6}\)
b) Ta có: \(\sin^2 a = 1 - {{\cos }^2}a = 1 - \frac{1}{9} = \frac{8}{9} \).
Vì \(\pi < a < \frac{{3\pi }}{2}\) nên \(\sin a < 0\). Do đó \(\sin a\ = - \frac{{2\sqrt 2 }}{3}\).
Suy ra \(\tan a\; = \frac{{\sin a}}{{\cos a}} = \frac{{ - \frac{{2\sqrt 2 }}{3}}}{{ - \frac{1}{3}}} = 2\sqrt 2 \)
Ta có: \(\tan \left( {a - \frac{\pi }{4}} \right) = \frac{{\tan a - \tan \frac{\pi }{4}}}{{1 + \tan a\tan \frac{\pi }{4}}} = \frac{{\frac{{\sin a}}{{\cos a}} - 1}}{{1 + \frac{{\sin a}}{{\cos a}}}} = \frac{{2\sqrt 2 - 1}}{{1 + 2\sqrt 2 }} = \frac{{9 - 4\sqrt 2 }}{7}\).
- Bài 1.9 trang 21 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 1.10 trang 21 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 1.11 trang 21 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 1.12 trang 21 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 1.13 trang 21 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức