Bài 17 trang 118 Sách bài tập Hình học lớp 12 Nâng cao


Cho ba vectơ

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Cho ba vectơ \(\overrightarrow u (3;7;0),\overrightarrow v (2;3;1),\overrightarrow {\rm{w}} (3; - 2;4).\)

LG a

Chứng minh \(\overrightarrow u ,\overrightarrow v ,\overrightarrow {\rm{w}} \) không đồng phẳng.

Lời giải chi tiết:

\(\eqalign{  &\;\left[ {\overrightarrow u ,\overrightarrow v } \right] = \left( {\left| \matrix{  7 \hfill \cr  3 \hfill \cr}  \right.\left. \matrix{  0 \hfill \cr  1 \hfill \cr}  \right|;\left| \matrix{  0 \hfill \cr  1 \hfill \cr}  \right.\left. \matrix{  3 \hfill \cr  2 \hfill \cr}  \right|;\left| \matrix{  3 \hfill \cr  2 \hfill \cr}  \right.\left. \matrix{  7 \hfill \cr  3 \hfill \cr}  \right|} \right)\cr&  = (7; - 3; - 5)  \cr  &  \Rightarrow \left[ {\overrightarrow u ,\overrightarrow v } \right].\overrightarrow {\rm{w}} = 21 + 6 - 20 = 7 \ne 0. \cr} \)

Vậy \(\overrightarrow u ,\overrightarrow v ,\overrightarrow {\rm{w}} \) không đồng phẳng.

LG b

Biểu thị vec tơ \(\overrightarrow a ( - 4; - 12;3)\) theo ba vectơ \(\overrightarrow u ,\overrightarrow v ,\overrightarrow {\rm{w}} \).

Lời giải chi tiết:

\(\eqalign{\;\overrightarrow a  = m\overrightarrow u  + n\overrightarrow v  + k\overrightarrow {\rm{w}}   \cr  &  \Leftrightarrow \left\{ \matrix{  3m + 2n + 3k =  - 4 \hfill \cr  7m + 3n - 2k =  - 12 \hfill \cr  n + 4k = 3 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  m =  - 5 \hfill \cr  n = 7 \hfill \cr  k =  - 1. \hfill \cr}  \right. \cr} \)

Vậy \(\overrightarrow a  =  - 5\overrightarrow u  + 7\overrightarrow v  - \overrightarrow {\rm{w}} .\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí