Bài 1.43 trang 41 SGK Toán 11 tập 1 - Cùng khám phá


Phương trình \(\sin x = \cos x\) có số nghiệm thuộc đoạn \(\left[ { - \pi ;\pi } \right]\) là

Đề bài

Phương trình \(\sin x = \cos x\) có số nghiệm thuộc đoạn \(\left[ { - \pi ;\pi } \right]\) là

A. 2.

B. 4.

C. 5.

D. 6.

Phương pháp giải - Xem chi tiết

Áp dụng công thức giữa các giá trị lượng giác của các góc liên quan để đưa phương trình về phương trình lượng giác cơ bản. Giải phương trình tìm x thuộc đoạn \(\left[ { - \pi ;\pi } \right]\).

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

\(\begin{array}{l}\sin x = \cos x \Leftrightarrow \cos \left( {\frac{\pi }{2} - x} \right) = \cos x\\ \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{2} - x = x + k2\pi \\\frac{\pi }{2} - x =  - x + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right) \Leftrightarrow \left[ \begin{array}{l} - 2x =  - \frac{\pi }{2} + k2\pi \\\frac{\pi }{2} = k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right) \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} - k\pi \\k = \frac{1}{4}\left( {\rm{L}} \right)\end{array} \right.\left( {k \in \mathbb{Z}} \right)\\ - \pi  \le x \le \pi  \Leftrightarrow  - \pi  \le \frac{\pi }{4} - k\pi  \le \pi  \Leftrightarrow  - \frac{{5\pi }}{4} \le  - k\pi  \le \frac{{3\pi }}{4} \Leftrightarrow \frac{5}{4} \ge k \ge  - \frac{3}{4}\\ \Rightarrow k \in \left\{ {0;1} \right\} \Rightarrow x \in \left\{ {\frac{\pi }{4}; - \frac{{3\pi }}{4}} \right\}\end{array}\)

Chọn đáp án A.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí