Bài 1.32 trang 41 SGK Toán 11 tập 1 - Cùng khám phá


Biết \(\sin \alpha = - \frac{1}{6}\) và \(\pi < \alpha < \frac{{3\pi }}{2}\), tính:

Đề bài

Biết \(\sin \alpha  =  - \frac{1}{6}\) và \(\pi  < \alpha  < \frac{{3\pi }}{2}\), tính:

a) \(\sin \left( {\alpha  - \frac{\pi }{3}} \right);\)

b) \(\cos 2\alpha ;\)

c) \(\tan \left( {\frac{\pi }{4} - \alpha } \right);\)

d) \(\cos \left( {\frac{\alpha }{2}} \right).\)

Phương pháp giải - Xem chi tiết

Áp dụng các hệ thức cơ bản của góc lượng giác để tính \(\cos \alpha ,\tan \alpha \). Áp dụng các công thức nhân đôi, công thức cộng để tính các giá trị lượng giác bài yêu cầu.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

\(\begin{array}{l}{\cos ^2}\alpha  = 1 - {\sin ^2}\alpha  = \frac{{35}}{{36}}\\ \Rightarrow \cos \alpha  =  - \frac{{\sqrt {35} }}{6}\\ \Rightarrow \tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{1}{{\sqrt {35} }}\end{array}\)

a) \(\sin \left( {\alpha  - \frac{\pi }{3}} \right) = \sin \alpha \cos \frac{\pi }{3} - \cos \alpha \sin \frac{\pi }{3} =  - \frac{1}{6}.\frac{1}{2} - \left( { - \frac{{\sqrt {35} }}{6}} \right).\frac{{\sqrt 3 }}{2} = \frac{{\sqrt {105}  - 1}}{{12}}\)

b) \(\cos 2\alpha  = {\cos ^2}\alpha  - {\sin ^2}\alpha  = \frac{{35}}{{36}} - {\left( { - \frac{1}{6}} \right)^2} = \frac{{17}}{{18}}\)

c) \(\tan \left( {\frac{\pi }{4} - \alpha } \right) = \frac{{\tan \frac{\pi }{4} - \tan \alpha }}{{1 + \tan \frac{\pi }{4}\tan \alpha }} = \frac{{1 - \frac{1}{{\sqrt {35} }}}}{{1 + \frac{1}{{\sqrt {35} }}}} = \frac{{18 - \sqrt {35} }}{{17}}\)

d) \({\cos ^2}\left( {\frac{\alpha }{2}} \right) = \frac{{\cos \alpha  + 1}}{2} = \frac{{ - \frac{{\sqrt {35} }}{6} + 1}}{2} = \frac{{6 - \sqrt {35} }}{{12}}\)

Mà \(\frac{\pi }{2} < \frac{\alpha }{2} < \frac{{3\pi }}{4}\)\( \Rightarrow \cos \left( {\frac{\alpha }{2}} \right) =  - \sqrt {\frac{{6 - \sqrt {35} }}{{12}}} \)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí