Bài 1.31 trang 41 SGK Toán 11 tập 1 - Cùng khám phá>
Giả sử \(\cos \alpha = m\), với \(\frac{{3\pi }}{2} < \alpha < 2\pi \). Tính các giá trị sau theo m:
Đề bài
Giả sử \(\cos \alpha = m\), với \(\frac{{3\pi }}{2} < \alpha < 2\pi \). Tính các giá trị sau theo m:
a) \(\cos \left( {\pi - \alpha } \right);\)
b) \(\sin \left( {\alpha + \pi } \right);\)
c) \(\sin \left( {\frac{\pi }{2} + \alpha } \right);\)
d) \(\tan \left( {3\pi - \alpha } \right).\)
Phương pháp giải - Xem chi tiết
Áp dụng các hệ thức cơ bản của góc lượng giác, công thức giữa các góc lượng giác liên quan đến nhau.
Lời giải chi tiết
a) \(\cos \left( {\pi - \alpha } \right) = - \cos \alpha = - m\)
b) \({\sin ^2}\alpha = 1 - {\cos ^2}\alpha = 1 - {m^2}\)
\(\frac{{3\pi }}{2} < \alpha < 2\pi \)\( \Rightarrow \sin \alpha = - \sqrt {1 - {m^2}} \)
Ta có: \(\sin \left( {\alpha + \pi } \right) = - \sin \alpha = \sqrt {1 - {m^2}} \)
c) \(\sin \left( {\frac{\pi }{2} + \alpha } \right) = \cos \alpha = m\)
d) \(\tan \left( {3\pi - \alpha } \right) = \tan \left( { - \alpha } \right) = - \tan \alpha = - \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{ - \sqrt {1 - {m^2}} }}{m}\)
- Bài 1.32 trang 41 SGK Toán 11 tập 1 - Cùng khám phá
- Bài 1.33 trang 41 SGK Toán 11 tập 1 - Cùng khám phá
- Bài 1.34 trang 41 SGK Toán 11 tập 1 - Cùng khám phá
- Bài 1.35 trang 41 SGK Toán 11 tập 1 - Cùng khám phá
- Bài 1.36 trang 41 SGK Toán 11 tập 1 - Cùng khám phá
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Công thức nhân xác suất - SGK Toán 11 Cùng khám phá
- Lý thuyết Công thức cộng xác suất - SGK Toán 11 Cùng khám phá
- Lý thuyết Thể tích khối lăng trụ, khối chóp và khối chóp cụt đều - SGK Toán 11 Cùng khám phá
- Lý thuyết Khoảng cách - SGK Toán 11 Cùng khám phá
- Lý thuyết Hai mặt phẳng vuông góc - SGK Toán 11 Cùng khám phá
- Lý thuyết Công thức nhân xác suất - SGK Toán 11 Cùng khám phá
- Lý thuyết Công thức cộng xác suất - SGK Toán 11 Cùng khám phá
- Lý thuyết Thể tích khối lăng trụ, khối chóp và khối chóp cụt đều - SGK Toán 11 Cùng khám phá
- Lý thuyết Khoảng cách - SGK Toán 11 Cùng khám phá
- Lý thuyết Hai mặt phẳng vuông góc - SGK Toán 11 Cùng khám phá