Bài 1.31 trang 41 SGK Toán 11 tập 1 - Cùng khám phá


Giả sử \(\cos \alpha = m\), với \(\frac{{3\pi }}{2} < \alpha < 2\pi \). Tính các giá trị sau theo m:

Đề bài

Giả sử \(\cos \alpha  = m\), với \(\frac{{3\pi }}{2} < \alpha  < 2\pi \). Tính các giá trị sau theo m:

a) \(\cos \left( {\pi  - \alpha } \right);\)

b) \(\sin \left( {\alpha  + \pi } \right);\)

c) \(\sin \left( {\frac{\pi }{2} + \alpha } \right);\)

d) \(\tan \left( {3\pi  - \alpha } \right).\)

Phương pháp giải - Xem chi tiết

Áp dụng các hệ thức cơ bản của góc lượng giác, công thức giữa các góc lượng giác liên quan đến nhau.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

a) \(\cos \left( {\pi  - \alpha } \right) =  - \cos \alpha  =  - m\)

b) \({\sin ^2}\alpha  = 1 - {\cos ^2}\alpha  = 1 - {m^2}\)

\(\frac{{3\pi }}{2} < \alpha  < 2\pi \)\( \Rightarrow \sin \alpha  =  - \sqrt {1 - {m^2}} \)

Ta có: \(\sin \left( {\alpha  + \pi } \right) =  - \sin \alpha  = \sqrt {1 - {m^2}} \)

c) \(\sin \left( {\frac{\pi }{2} + \alpha } \right) = \cos \alpha  = m\)

d) \(\tan \left( {3\pi  - \alpha } \right) = \tan \left( { - \alpha } \right) =  - \tan \alpha  =  - \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{ - \sqrt {1 - {m^2}} }}{m}\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí