Lý thuyết Giới hạn của hàm số - SGK Toán 11 Kết nối tri thức


1. Giới hạn hữu hạn của hàm số tại một điểm

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

1. Giới hạn hữu hạn của hàm số tại một điểm

Giả sử (a;b) là một khoảng chứa điểm \({x_0}\)và hàm số \(y = f(x)\)xác định trên khoảng (a;b), có thể trừ điểm \({x_0}\). Ta nói hàm số \(f(x)\)có giới hạn là số L khi \(x\) dần tới \({x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì, \({x_n} \in \left( {a;b} \right)\),\({x_n} \ne {x_0}\) và \({x_n} \to {x_0}\), ta có\(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\)hay \(f(x) \to L\), khi \({x_n} \to {x_0}\).

*Quy tắc tính giới hạn của hàm số tại một điểm

a, Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\)và \(\mathop {\lim }\limits_{x \to {x_0}} g(x) = M\)thì

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f(x) \pm g(x)} \right] = L \pm M\)

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f(x).g(x)} \right] = L.M\)

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {\frac{{f(x)}}{{g(x)}}} \right] = \frac{L}{M}\left( {M \ne 0} \right)\)

b, Nếu \(f(x) \ge 0\)với mọi \(x \in \left( {a;b} \right)\backslash \left\{ {{x_0}} \right\}\) và \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) thì \(L \ge 0\)và \(\mathop {\lim }\limits_{x \to {x_0}} \sqrt {f(x)}  = \sqrt L \).

2. Giới hạn một bên

Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( {{x_0};b} \right)\). Ta nói số L là giới hạn bên phải của \(f(x)\)khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì thỏa mãn \({x_0} < {x_n} < b\) và \({x_n} \to {x_0}\)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = L\).

Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( {a;{x_0}} \right)\). Ta nói số L là giới hạn bên trái của khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì thỏa mãn \(a < {x_n} < {x_0}\) và \({x_n} \to {x_0}\)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = L\).

3. Giới hạn hữu hạn của hàm số tại vô cực

Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( {a; + \infty } \right)\). Ta nói hàm số \(f(x)\)có giới hạn là số L khi \(x \to  + \infty \) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì \({x_n} > a\) và \({x_n} \to  + \infty \)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to  + \infty } f(x) = L\) hay \(f(x) \to L\) khi \(x \to  + \infty \).

Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( { - \infty ;b} \right)\). Ta nói hàm số \(f(x)\)có giới hạn là số L khi \(x \to  - \infty \) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì \({x_n} < b\) và \({x_n} \to  - \infty \)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to  - \infty } f(x) = L\) hay \(f(x) \to L\) khi \(x \to  - \infty \).

* Nhận xét:

Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực.

Với c là hằng số, \(\mathop {\lim }\limits_{x \to  + \infty } c = c\), \(\mathop {\lim }\limits_{x \to  - \infty } c = c\).

Với k là một số nguyên dương, ta có: \(\mathop {\lim }\limits_{x \to  + \infty } (\frac{1}{{{x^k}}}) = 0,\mathop {\lim }\limits_{x \to  - \infty } (\frac{1}{{{x^k}}}) = 0\).

4. Giới hạn vô cực của hàm số tại một điểm

a, Giới hạn vô cực

- Giả sử (a;b) là một khoảng chứa \({x_0}\)và hàm số \(y = f(x)\)xác định trên khoảng \(\left( {a;b} \right)\backslash \left\{ {{x_0}} \right\}\). Ta nói hàm số \(f(x)\)có giới hạn là \( + \infty \)khi \(x\) dần tới \({x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì, \(\left( {a;b} \right)\backslash \left\{ {{x_0}} \right\}\) và \({x_n} \to {x_0}\), ta có\(f({x_n}) \to  + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) =  + \infty \).

Ta nói hàm số \(f(x)\)có giới hạn \( - \infty \)khi \(x \to {x_0}\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) =  - \infty \), nếu \(\mathop {\lim }\limits_{x \to {x_0}} \left[ { - f(x)} \right] =  + \infty \).

- Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( {{x_0};b} \right)\). Ta nói hàm số \(f(x)\)có giới hạn \( + \infty \) khi \(x \to {x_0}\) về bên phải nếu với dãy số \(\left( {{x_n}} \right)\)bất kì thỏa mãn \({x_0} < {x_n} < b\) và \({x_n} \to {x_0}\)ta có \(f({x_n}) \to  + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) =  + \infty \).

Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( {a;{x_0}} \right)\). Ta nói hàm số \(f(x)\)có giới hạn \( + \infty \) khi \(x \to {x_0}\) về bên trái nếu với dãy số \(\left( {{x_n}} \right)\)bất kì thỏa mãn \(a < {x_n} < {x_0}\) và \({x_n} \to {x_0}\)ta có \(f({x_n}) \to  + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) =  + \infty \).

Các giới hạn một bên\(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) =  - \infty \), \(\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) =  - \infty \) được định nghĩa tương tự.

b, Một số quy tắc tính giới hạn vô cực

*Giới hạn của tích\(\mathop {\lim }\limits_{x \to {x_0}} f(x).g(x)\)

 

*Giới hạn của thương \(\frac{{f(x)}}{{g(x)}}\)

 

 

 

 

 


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí