Bài 5.7 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức>
Cho hai hàm số (fleft( x right) = frac{{{x^2} - 1}}{{x - 1}}) và g(x) = x + 1. Khẳng định nào sau đây là đúng?
Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Cho hai hàm số \(f\left( x \right) = \frac{{{x^2} - 1}}{{x - 1}}\) và g(x) = x + 1. Khẳng định nào sau đây là đúng?
a) f(x) = g(x);
b) \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} g\left( x \right)\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a) Kiểm tra xem ĐKXĐ của 2 hàm số có giống nhau không.
b) Tính giới hạn của hai hàm số.
Lời giải chi tiết
+) Biểu thức f(x) có nghĩa khi x – 1 ≠ 0 ⇔ x ≠ 1.
Ta có: \(f\left( x \right) = \frac{{{x^2} - 1}}{{x - 1}} = \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{x - 1}} = x + 1\), với mọi x ≠ 1.
Biểu thức g(x) = x + 1 có nghĩa với mọi x.
Do đó, điều kiện xác định của hai hàm số f(x) và g(x) khác nhau, vậy khẳng định a) là sai.
+) Ta có: \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \left( {x + 1} \right) = 1 + 1 = 2\);
Vậy \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} g\left( x \right)\) nên khẳng định b) là đúng.
- Bài 5.8 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.9 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.10 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.11 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.12 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức