 Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
                                                
                            Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
                         Bài 5. Giá trị lượng giác của một góc từ 0 đến 180 Toán..
                                                        Bài 5. Giá trị lượng giác của một góc từ 0 đến 180 Toán..
                                                    Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180>
Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
1. GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC
+) Nửa đường tròn đơn vị: nửa đường tròn tâm O, bán kính R = 1 nằm phía trên trục hoành (H.3.2).

+) Với mỗi góc \(\alpha \) \(({0^o} \le \alpha \le {180^o})\) có duy nhất điểm \(M({x_0};{y_0})\) trên nửa đường tròn đơn vị nói trên để \(\widehat {xOM} = \alpha \). Khi đó:
\(\sin \alpha = {y_0}\) là tung độ của M;
\(\cos \alpha = {x_0}\) là hoành độ của M;
\(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{{y_0}}}{{{x_0}}}(\alpha \ne {90^o})\);
\(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{{x_0}}}{{{y_0}}}(\alpha \ne {0^o},\alpha \ne {180^o})\).
+) Bảng giá trị lượng giác của một số góc đặc biệt:
 
+) Tìm các giá trị lượng giác của góc bằng máy tính cầm tay.
Trước tiên, bấm phím SHIFT MODE rồi bấm phím 3 để chọn đơn vị góc là “độ”.
 
Chú ý:
Khi tìm x biết sinx, máy tính chỉ đưa ra giá trị \(x \le {90^o}\).
Để tính cotx, ta tính 1: tanx.
2. MỐI QUAN HỆ GIỮA CÁC GIÁ TRỊ LƯỢNG GIÁC CỦA HAI GÓC BÙ NHAU
* Hai góc bù nhau, \(\alpha \) và \({180^o} - \alpha \):
\(\begin{array}{l}\sin \left( {{{180}^o} - \alpha } \right) = \sin \alpha \\\cos \left( {{{180}^o} - \alpha } \right) = - \cos \alpha \\\tan \left( {{{180}^o} - \alpha } \right) = - \tan \alpha (\alpha \ne {90^o})\\\cot \left( {{{180}^o} - \alpha } \right) = - \cot \alpha ({0^o} < \alpha < {180^o})\end{array}\)
* Hai góc phụ nhau, \(\alpha \) và \({90^o} - \alpha \):
\(\begin{array}{l}\sin \left( {{{90}^o} - \alpha } \right) = \cos \alpha \\\cos \left( {{{90}^o} - \alpha } \right) = \sin \alpha \\\tan \left( {{{90}^o} - \alpha } \right) = \cot \alpha (\alpha \ne {90^o},{0^o} < \alpha < {180^o})\\\cot \left( {{{90}^o} - \alpha } \right) = \tan \alpha (\alpha \ne {90^o},{0^o} < \alpha < {180^o})\end{array}\)
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ- Giải câu hỏi mở đầu trang 33 SGK Toán 10 tập 1 - Kết nối tri thức
- Giải mục 1 trang 34, 35 SGK Toán 10 tập 1 - Kết nối tri thức
- Giải mục 2 trang 36, 37 SGK Toán 10 tập 1 - Kết nối tri thức
- Giải bài 3.1 trang 37 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 3.2 trang 37 SGK Toán 10 tập 1 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            