 Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
                                                
                            Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
                         Bài 25. Nhị thức Newton Toán 10 Kết nối tri thức
                                                        Bài 25. Nhị thức Newton Toán 10 Kết nối tri thức
                                                    Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức>
1. Một số công thức khai triển
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
A. Lý thuyết
1. Một số công thức khai triển
| \({(a + b)^4} = C_4^0{a^4} + C_4^1{a^3}b + C_4^2{a^2}{b^2} + C_4^3{a^1}{b^3} + C_4^4{b^4} \) \(= {a^4} + 4{a^3}b + 6{a^2}{b^2} + 4{a^1}{b^3} + {b^4}\). 
 \({(a + b)^5} = C_5^0{a^5} + C_5^1{a^4}b + C_5^2{a^3}{b^2} + C_5^3{a^2}{b^3} + C_5^4a{b^4} + C_5^5{b^5}\)\( = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\). | 
Những công thức khai triển nói trên là công thức nhị thức Newton \({(a + b)^n}\) ứng với n = 4 và n = 5.
Chú ý: Các hệ số trong khai triển nhị thức Newton \({(a + b)^n}\) với n = 0; 1; 2; 3;… được viết thành từng hàng và xếp thành bảng số dưới đây. Bảng số này có quy luật: số đầu tiên và số cuối cùng của mỗi hàng đều là 1; tổng của hai số liên tiếp cùng hàng bằng số của hàng kế dưới ở vị trí giữa hai số đó (được chỉ bởi mũ tên trên bảng). Bảng số này được gọi là tam giác Pascal.

2. Công thức khai triển tổng quát
| \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^k{a^{n - k}}{b^k} + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\). | 
Nhận xét:
- Số hạng tổng quát trong khai triển của \({(a + b)^n}\) đều có dạng \(C_n^k{a^{n - k}}{b^k}\) \((0 \le k \le n)\).
- Từ công thức nhị thức Newton nói trên, ta có khai triển của \({(a - b)^n}\) như sau:
\({(a - b)^n} = C_n^0{a^n} - C_n^1{a^{n - 1}}b + C_n^2{a^{n - 2}}{b^2} - C_n^3{a^{n - 3}}{b^3} + ...\), ở đó các dấu “+”, “-“ xen kẽ nhau.
Ví dụ: \({(a - b)^3} = C_3^0{a^3} - C_3^1{a^{3 - 1}}b + C_3^2{a^{3 - 2}}{b^2} - C_3^3{a^{3 - 3}}{b^3}\)
\(= C_3^0{a^3} - C_3^1{a^2}b + C_3^2a{b^2} - C_3^3{b^3}\).
Có thể xem thêm trong Chuyên đề học tập Toán 10.
B. Bài tập
Bài 1: Khai triển biểu thức \({(x + 1)^4}\).
Giải:
Xác định số hạng: a = x, b = 1.
\({(x + 1)^4} = C_4^0{x^4} + C_4^1{x^3}.1 + C_4^2{x^2}{.1^2} + C_4^3{x^1}{.1^3} + C_4^4{.1^4} \)
\(= {a^4} + 4{x^3} + 6{x^2} + 4x + 1\).
Bài 2: Khai triển biểu thức \({(x - 1)^4}\).
Giải:
Có hai cách khai triển, tùy thuộc vào việc đặt b = -1 hay b = 1.
Nếu coi a = x, b = -1:
\({(x - 1)^4} = C_4^0{x^4} + C_4^1{x^3}.( - 1) + C_4^2{x^2}.{( - 1)^2} + C_4^3{x^1}.{( - 1)^3} + C_4^4.{( - 1)^4}\)
\(= {a^4} - 4{x^3} + 6{x^2} - 4x + 1\).
Hoặc có thể coi a = x, b = 1 và áp dụng công thức khai triển tổng quát:
\({(a - b)^n} = C_n^0{a^n} - C_n^1{a^{n - 1}}b + C_n^2{a^{n - 2}}{b^2} - C_n^3{a^{n - 3}}{b^3} + ...\), khi đó sẽ nhận được kết quả như trên (xen kẽ dấu).
Bài 3:
a) Khai triển biểu thức \({(x - 2y)^4}\) và tìm hệ số của số hạng chứa \({y^4}\).
b) Khai triển biểu thức \({(3x - y)^5}\).
Giải:
a) Coi a = x, b = -2y.
\({(x - 2y)^4} = {\left[ {x + ( - 2y)} \right]^4} = {x^4} + 4{x^3}( - 2y) + 6{x^2}{( - 2y)^2} + 4x{( - 2y)^3} + {( - 2y)^4}\)
\( = {x^4} - 8{x^3}y + 24{x^2}{y^2} - 32x{y^3} + 16{y^4}\).
Số hạng chứa \({y^4}\) là \(16{y^4}\), hệ số là 16.
b) Coi a = 3x, b = -y.
\({(3x - y)^5} = {\left[ {3x + ( - y)} \right]^5}\)
\( = {\left( {3x} \right)^5} + 5.{(3x)^4}.( - y) + 10{(3x)^3}.{( - y)^2} + 10{(3x)^2}.{( - y)^3} + 5.(3x).{( - y)^4} + {( - y)^5}\)
\( = 243{x^5} - 405{x^4}y + 270{x^3}{y^2} - 90{x^2}{y^3} + 15x{y^4} - {y^5}\).
Bài 4:
a) Xác định hệ số của \({x^6}\) trong khai triển \({\left( {2x + 1} \right)^{12}}\).
b) Xác định hệ số của \({x^9}\) trong khai triển \({\left( {3x - 2} \right)^{18}}\).
Giải:
a) Số hạng chứa \({x^6}\) là \(C_{12}^6.{\left( {2x} \right)^6} = C_{12}^6{.2^6}{x^6}\). Hệ số của \({x^6}\) là \(C_{12}^6{.2^6}\).
b) Số hạng chứa \({x^9}\) là \(C_{18}^9.{\left( {3x} \right)^9}.{( - 2)^9} = C_{18}^9.{( - 2)^9}{3^9}{x^9} = - C_{18}^9{.2^9}{3^9}{x^9}\). Hệ số của \({x^9}\) là \( - C_{18}^9{.2^9}{3^9} = - C_{18}^9{.6^9}\).
Bài 5: Cho tập hợp A = { a; b; c; d; e }. Tập hợp A có bao nhiêu tập hợp con?
Giải:
Tập hợp A có 5 phần tử. Mỗi tập con của A có k phần tử (1 ≤ k ≤ 5) là một tổ hợp chập k của A. Do đó, số tập con như vậy bằng \(C_5^k\). Mặt khác, có một tập con của A không có phần tử nào (tập rỗng), tức có \(C_5^0 = 1\) tập con như vậy. Do đó, số tập con của A bằng \(C_5^0 + C_5^1 + C_5^2 + C_5^3 + C_5^4 + C_5^5\).
 Theo công thức nhị thức Newton, ta có \(C_5^0 + C_5^1 + C_5^2 + C_5^3 + C_5^4 + C_5^5 = {(1 + 1)^5} = {2^5}\).
Vậy A có \({2^5} = 32\) tập con.

 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ- Giải mục 1 trang 72, 73, 74 SGK Toán 10 tập 2 - Kết nối tri thức
- Giải bài 8.12 trang 74 SGK Toán 10 – Kết nối tri thức
- Giải bài 8.13 trang 74 SGK Toán 10 – Kết nối tri thức
- Giải bài 8.14 trang 74 SGK Toán 10 – Kết nối tri thức
- Giải bài 8.15 trang 75 SGK Toán 10 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            