Giải mục 4 trang 61, 62 SGK Toán 9 tập 1 - Cùng khám phá


Cho biểu thức A không âm và biểu thức B dương. a) Giải thích vì sao \(\sqrt {\frac{A}{B}} .\sqrt B = \sqrt A \). b) Chứng minh \(\sqrt {\frac{A}{B}} = \frac{{\sqrt A }}{{\sqrt B }}\).

Lựa chọn câu để xem lời giải nhanh hơn

HĐ4

Trả lời câu hỏi Hoạt động 4 trang 61 SGK Toán 9 Cùng khám phá

Cho biểu thức A không âm và biểu thức B dương.

a) Giải thích vì sao \(\sqrt {\frac{A}{B}} .\sqrt B  = \sqrt A \).

b) Chứng minh \(\sqrt {\frac{A}{B}}  = \frac{{\sqrt A }}{{\sqrt B }}\).

Phương pháp giải:

Với hai biểu thức A và B không âm, ta có: \(\sqrt {A.B}  = \sqrt A .\sqrt B \).

Lời giải chi tiết:

a) Ta có: \(\sqrt {\frac{A}{B}} .\sqrt B  = \sqrt {\frac{A}{B}.B}  = \sqrt A \).

b) Vì \(\sqrt {\frac{A}{B}} .\sqrt B  = \sqrt A \) nên \(\sqrt {\frac{A}{B}}  = \frac{{\sqrt A }}{{\sqrt B }}\).

LT4

Trả lời câu hỏi Luyện tập 4 trang 62 SGK Toán 9 Cùng khám phá

Rút gọn các biểu thức sau:

a) \(\frac{a}{{{b^2}}}\sqrt {\frac{{{b^4}}}{{4{a^2}}}} \) với \(a < 0\);

b) \(\frac{{\sqrt {5{x^2}{y^5}} }}{{\sqrt {80{y^3}} }}\) với \(y > 0\).

Phương pháp giải:

+ Với biểu thức A không âm và biểu thức B dương, ta có: \(\sqrt {\frac{A}{B}}  = \frac{{\sqrt A }}{{\sqrt B }}\).

+ Với mọi biểu thức đại số A, ta có: \(\sqrt {{A^2}}  = \left| A \right|\).

Lời giải chi tiết:

a) \(\frac{a}{{{b^2}}}\sqrt {\frac{{{b^4}}}{{4{a^2}}}} \)\( = \frac{a}{{{b^2}}}\sqrt {{{\left( {\frac{{{b^2}}}{{2a}}} \right)}^2}} \)\( = \frac{a}{{{b^2}}}.\frac{{{b^2}}}{{2\left| a \right|}}\)\( = \frac{a}{{{b^2}}}.\frac{{{b^2}}}{{2\left( { - a} \right)}}\)\( = \frac{{ - 1}}{2}\) (vì \(a < 0\) nên \(\left| a \right| =  - a\));

b) \(\frac{{\sqrt {5{x^2}{y^5}} }}{{\sqrt {80{y^3}} }}\)\( = \sqrt {\frac{{5{x^2}{y^5}}}{{80{y^3}}}} \)\( = \sqrt {\frac{{{x^2}{y^2}}}{{16}}} \)\( = \sqrt {{{\left( {\frac{{xy}}{4}} \right)}^2}} \)\( = \frac{{\left| x \right|y}}{4}\) (do \(y > 0\)).

VD2

Trả lời câu hỏi Vận dụng 2 trang 62 SGK Toán 9 Cùng khám phá

Giải bài toán nêu trong phần Khởi động.

Công suất P (W), hiệu điện thế U (V) và điện trở R \(\left( \Omega  \right)\) trong một đoạn mạch một chiều liên hệ với nhau theo công thức \(U = \sqrt {PR} \) (nguồn: https://dinhnghia.vn/dinh-nghia-cong-suat-cua-dong-dien-mot-chieu-xoay-chieu.html). Nếu công suất và điện trở trong đoạn mạch tăng gấp đôi thì tỉ số giữa hiệu điện thế lúc đó và hiệu điện thế ban đầu bằng bao nhiêu?

Phương pháp giải:

+ Tính công suất và điện trở trong đoạn mạch khi tăng gấp đôi, từ đó tính hiệu điện thế mới đó.

+ Lập tỉ số giữa hiệu điện thế lúc đó và hiệu điện thế ban đầu.

Lời giải chi tiết:

Khi công suất trong đoạn mạch tăng gấp đôi thì công suất mới là 2P.

Khi điện trở trong đoạn mạch tăng gấp đôi thì điện trở mới là 2R.

Do đó, hiệu điện thế lúc này là: \({U_2} = \sqrt {2P.2R}  = \sqrt {{2^2}PR}  = 2\sqrt {PR} \).

Hiệu điện thế ban đầu là: \({U_1} = \sqrt {PR} \).

Tỉ số giữa hiệu điện thế lúc đó và hiệu điện thế ban đầu là: \(\frac{{{U_2}}}{{{U_1}}} = \frac{{2\sqrt {PR} }}{{\sqrt {PR} }} = 2\).


Bình chọn:
4.9 trên 7 phiếu
  • Giải mục 5 trang 62, 63, 64 SGK Toán 9 tập 1 - Cùng khám phá

    a) Nhân cả tử và mẫu của biểu thức \(\frac{4}{{3\sqrt 2 }}\) với \(\sqrt 2 \) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu. b) Nhân cả tử và mẫu của biểu thức \(\frac{5}{{\sqrt 2 + 1}}\) với \(\sqrt 2 - 1\) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu. c) Nhân cả tử và mẫu của biểu thức \(\frac{6}{{\sqrt 5 - \sqrt 2 }}\) với \(\sqrt 5 + \sqrt 2 \) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu.

  • Giải bài tập 3.13 trang 64 SGK Toán 9 tập 1 - Cùng khám phá

    Rút gọn các biểu thức sau: a) \(\sqrt {25{a^4}} - 2{a^2}\); b) \(3\sqrt {4{b^6}} + 7{b^3}\) với \(b < 0\); c) \(\frac{1}{{x - y}}\sqrt {{x^4}{{\left( {x - y} \right)}^2}} \) với \(x > y\); d) \(\sqrt {0,3} .\sqrt {270{z^2}} \).

  • Giải bài tập 3.14 trang 64 SGK Toán 9 tập 1 - Cùng khám phá

    Rút gọn rồi tính giá trị các biểu thức sau: a) \(\sqrt {9{{\left( {4 - 4x + {x^2}} \right)}^2}} \) tại \(x = \sqrt 2 \); b) \(\sqrt {4{a^2}{{\left( {9{b^2} + 6b + 1} \right)}^2}} \) tại \(a = - 2,b = - \sqrt 3 \); c) \({a^2}{b^2}.\sqrt {\frac{{9{b^4}}}{{25{a^6}}}} \) tại \(a = - 3,b = \sqrt 5 \); d) \(\frac{{\sqrt {3{x^6}{y^4}} }}{{\sqrt {27{x^2}{y^2}} }}\) tại \(x = - 3,y = \sqrt 5 \).

  • Giải bài tập 3.15 trang 64 SGK Toán 9 tập 1 - Cùng khám phá

    Tìm x, biết: a) \(\sqrt 3 x - \sqrt {48} = 0\); b) \(2\sqrt 5 x + \sqrt {80} = \sqrt {125} - \sqrt {45} \).

  • Giải bài tập 3.16 trang 64 SGK Toán 9 tập 1 - Cùng khám phá

    Trục căn thức ở mẫu (với giả thiết các biểu thức đều có nghĩa): a) \(\frac{{2\sqrt 6 + 1}}{{4\sqrt 6 }}\); b) \(\frac{{\sqrt 5 - 3}}{{\sqrt 5 + 3}}\); c) \(\frac{4}{{\sqrt {10} - \sqrt 8 }}\); d) \(\frac{{ab}}{{2\sqrt a - \sqrt b }}\); e) \(\frac{{3x}}{{4\sqrt x - 1}}\); g) \(\frac{{\sqrt m + \sqrt n }}{{m\sqrt n }}\).

>> Xem thêm

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí