Giải mục 2 trang 46 SGK Toán 10 tập 2 - Kết nối tri thức>
Trên mặt phẳng tọa độ Oxy, một vật chuyển động nhanh trên đường tròn có phương trình
Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
HĐ2
Cho đường tròn \(\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 25\) và điểm \(M\left( {4; - 2} \right)\).
a) Chứng minh điểm \(M\left( {4; - 2} \right)\) thuộc đường tròn \(\left( C \right)\).
b) Xác định tâm và bán kính đường tròn \(\left( C \right)\).
c) Gọi \(\Delta \) là tiếp tuyến của \(\left( C \right)\) tại M. Hãy chỉ ra một vecto pháp tuyến của đường thẳng \(\Delta \). Từ đó, viết phương trình đường thẳng \(\Delta \).
Lời giải chi tiết:
a) Thay tọa độ điểm \(M\left( {4; - 2} \right)\) vào phương trình đường tròn ta được: \({\left( {4 - 1} \right)^2} + {\left( { - 2 - 2} \right)^2} = {3^2} + {4^2} = 25\). Vậy điểm M thỏa mãn phương trình đường tròn \(\left( C \right)\).
b) Đường tròn \(\left( C \right)\) có tâm \(I\left( {1;2} \right)\) và \(R = 5\).
c) Ta có: \(\overrightarrow {{n_\Delta }} = \overrightarrow {IM} = \left( {3; - 4} \right)\). Vậy phương trình tiếp tuyến \(\Delta \) của đường tròn \(\left( C \right)\) là:
\(3\left( {x - 4} \right) - 4\left( {y + 2} \right) = 0 \Leftrightarrow 3x - 4y - 20 = 0\)
Luyện tập 4
Cho đường tròn \(\left( C \right):{x^2} + {y^2} - 2x + 4y + 1 = 0\). Viết phương trình tiếp tuyến \(\Delta \) của \(\left( C \right)\) tại điểm \(N\left( {1;0} \right)\).
Phương pháp giải:
Đường thẳng đi \(\Delta \) qua N và có vecto pháp tuyến là \(\overrightarrow {IN} \).
Lời giải chi tiết:
Đường tròn \(\left( C \right)\) có tâm \(I\left( {1; - 2} \right)\). Đường thẳng \(\Delta \) đi qua điểm \(N\left( {1;0} \right)\) nhận \(\overrightarrow {IN} = \left( {0;2} \right)\) làm vecto pháp tuyến là \(y = 0\).
Vận dụng 2
Trên mặt phẳng tọa độ Oxy, một vật chuyển động nhanh trên đường tròn có phương trình \({x^2} + {y^2} = 25\) Khi tới vị trí M(3;4) thì vật bị văng khỏi quỹ đạo tròn và ngay sau đó, trong một khoảng thời gian ngắn bay theo hướng tiếp tuyến của đường tròn. Hỏi trong khoảng thời gian ngắn ngay sau khi văng, vật chuyển động trên đường thẳng nào?
Phương pháp giải:
Vật chuyển động trên đường thẳng \(d\) đi qua M và có vecto pháp tuyến là \(\overrightarrow {OM} \).
Lời giải chi tiết:
Khi tới vị trị M(3;4), vật bị văng khỏi quỹ đạo tròn và ngay sau đó bay theo hướng tiếp tuyến d của đường tròn tại điểm M. Do đó, d đi qua điểm M và nhận vecto \(\overrightarrow {OM} = \left( {3;4} \right)\) làm vecto pháp tuyến. Vậy phương trình của d là: \(3\left( {x - 3} \right) + 4\left( {y - 4} \right) = 0 \Leftrightarrow 3x + 4y - 25 = 0\).
- Giải bài 7.13 trang 46 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.15 trang 47 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.16 trang 47 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.17 trang 47 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.18 trang 47 SGK Toán 10 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Ba đường conic - SGK Toán 10 Kết nối tri thức
- Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Kết nối tri thức
- Lý thuyết Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách - SGK Toán 10 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng - SGK Toán 10 Kết nối tri thức
- Lý thuyết Phương trình quy về phương trình bậc hai - SGK Toán 10 Kết nối tri thức
- Lý thuyết Ba đường conic - SGK Toán 10 Kết nối tri thức
- Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Kết nối tri thức
- Lý thuyết Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách - SGK Toán 10 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng - SGK Toán 10 Kết nối tri thức
- Lý thuyết Phương trình quy về phương trình bậc hai - SGK Toán 10 Kết nối tri thức