Giải mục 2 trang 26 SGK Toán 12 tập 1 - Cùng khám phá


Khảo sát sự biến thiên và vẽ đồ thị các hàm số sau: a) (y = f(x) = - {x^3} + 2{x^2} + 4x - 3) b) (y = f(x) = frac{1}{3}{x^3} - {x^2} + x + 1)

Lựa chọn câu để xem lời giải nhanh hơn

LT1

Trả lời câu hỏi Luyện tập 1 trang 26 SGK Toán 12 Cùng khám phá

Khảo sát sự biến thiên và vẽ đồ thị các hàm số sau:

a) \(y = f(x) =  - {x^3} + 2{x^2} + 4x - 3\)

b) \(y = f(x) = \frac{1}{3}{x^3} - {x^2} + x + 1\)

Phương pháp giải:

- Tìm tập xác định của hàm số

- Xét sự biến thiên của hàm số

- Vẽ đồ thị hàm số

Lời giải chi tiết:

a)

- Tập xác định: D = R.

- Sự biến thiên:

Giới hạn:

\(\mathop {\lim }\limits_{x \to  + \infty } f(x) = \mathop {\lim }\limits_{x \to  + \infty } \left( { - {x^3} + 2{x^2} + 4x - 3} \right) = \mathop {\lim }\limits_{x \to  + \infty } \left[ { - {x^3}\left( {1 - \frac{2}{x} - \frac{4}{{{x^2}}} + \frac{3}{{{x^3}}}} \right)} \right] =  - \infty \)

\(\mathop {\lim }\limits_{x \to  - \infty } f(x) = \mathop {\lim }\limits_{x \to  - \infty } \left( { - {x^3} + 2{x^2} + 4x - 3} \right) = \mathop {\lim }\limits_{x \to  - \infty } \left[ { - {x^3}\left( {1 - \frac{2}{x} - \frac{4}{{{x^2}}} + \frac{3}{{{x^3}}}} \right)} \right] =  + \infty \)

\({y^\prime } = 0 \leftrightarrow  - 3{x^2} + 4x + 4 = 0 \leftrightarrow x = 2{\rm{  }}\)hoặc \(x =  - \frac{2}{3}\)

Bảng biến thiên:

Chiều biến thiên: Hàm số nghịch biến trên các khoảng \(( - \infty  - \frac{2}{3})\) và \((2; + \infty )\), đồng biến trên khoảng \(( - \frac{2}{3};2)\).

Cực trị: Hàm số đạt cực tiểu tại \(x =  - \frac{2}{3},{y_{CT}} =  - \frac{{121}}{{27}}.\)

Hàm số đạt cực đại tại \(x = 2,{y_{CD}} = 5.\)

- Vẽ đồ thị:

Giao điểm với trục Oy là \((0, - 3)\).

Giao điểm với trục Ox là \((3,0)\left( {\frac{{ - 1 + \sqrt 5 }}{2},0} \right),\left( {\frac{{ - 1 - \sqrt 5 }}{2},0} \right)\).

b)

- Tập xác định: D = R.

- Sự biến thiên:

Giới hạn:

\(\mathop {\lim }\limits_{x \to  + \infty } f(x) = \mathop {\lim }\limits_{x \to  + \infty } \left( {\frac{1}{3}{x^3} - {x^2} + x + 1} \right) = \mathop {\lim }\limits_{x \to  + \infty } \left[ {{x^3}\left( {\frac{1}{3} - \frac{1}{x} + \frac{1}{{{x^2}}} + \frac{1}{{{x^3}}}} \right)} \right] =  + \infty .\)

\(\mathop {\lim }\limits_{x \to  - \infty } f(x) = \mathop {\lim }\limits_{x \to  - \infty } \left( {\frac{1}{3}{x^3} - {x^2} + x + 1} \right) = \mathop {\lim }\limits_{x \to  - \infty } \left[ {{x^3}\left( {\frac{1}{3} - \frac{1}{x} + \frac{1}{{{x^2}}} + \frac{1}{{{x^3}}}} \right)} \right] =  - \infty .\)

Ta có:

\({y^\prime } = {x^2} - 2x + 1\)

\({y^\prime } = 0 \leftrightarrow {x^2} - 2x + 1 = 0 \leftrightarrow x = 1\)

Bảng biến thiên:

Chiều biến thiên: Hàm số đồng biến trên R

Cực trị: Vì hàm số đồng biến trên R nên hàm số không có điểm cực trị

- Vẽ đồ thị:

Giao điểm với trục Oy là (0,1).

Giao điểm với trục Ox là (−0.5874,0).

VD1

Trả lời câu hỏi Vận dụng 1 trang 26 SGK Toán 12 Cùng khám phá

Một chi tiết máy có dạng khối nón với bán kính đáy là 6 cm và chiều cao là 8 cm. Người ta cần khoan từ đáy khối nón lên phía trên một khối trụ có bán kính đáy là r (r > 0)và có tâm của đáy trùng tâm của đáy khối nón như Hình 1.32. Xác định r sao cho phần thể tích khối trụ có được là lớn nhất.

Phương pháp giải:

- Biểu diễn thể tích khối trụ cần khoan trong khối nón

- Biểu diễn chiều cao h của khối trụ theo bán kính r

- Xác giá trị r để thể tích khối trụ V lớn nhất bằng cách tìm giá trị lớn nhất của V trong khoảng (0, \( + \infty )\).

Lời giải chi tiết:

Ta có thể tích khối trụ là:

\(V = \pi {r^2}h\)

Sử dụng tỷ lệ hình học trong tam giác đồng dạng:

\(\frac{h}{8} = \frac{{6 - r}}{6} \to h = 8.\frac{{6 - r}}{6} = 8 - \frac{{8r}}{6} = 8 - \frac{{4r}}{3}\)

Thay h vào công thức tính thể tích V:

\(V = \pi {r^2}\left( {8 - \frac{{4r}}{3}} \right) = \pi {r^2} \cdot \frac{{24 - 4r}}{3} = \pi  \cdot \frac{{24{r^2} - 4{r^3}}}{3} = \frac{\pi }{3}\left( {24{r^2} - 4{r^3}} \right)\)

Đạo hàm V theo r:

\(\frac{{dV}}{{dr}} = \frac{\pi }{3}\left( {48r - 12{r^2}} \right) = \frac{\pi }{3} \cdot 12r(4 - r) = 4\pi r(4 - r)\)

Với \(\frac{{dV}}{{dr}} = 0\) thì ta có 2 nghiệm r là \(r = 0\) hoặc \(r = 4\) (Loại \(r = 0\) vì \(r > 0\))

Lập bảng biến thiên của hàm số \(f(x) = \frac{\pi }{3}\left( {24{x^2} - 4{x^3}} \right)\)

Nhận thấy khi x = 0 thì giá trị của f(x) là lớn nhất

Vậy giá trị bán kính r sao cho phần thể tích khối trụ có được là lớn nhất là r = 4cm.


Bình chọn:
4.9 trên 7 phiếu
  • Giải mục 3 trang 28 SGK Toán 12 tập 1 - Cùng khám phá

    Khảo sát sự biến thiên và vẽ đồ thị của hàm số (y = f(x) = frac{{2x + 4}}{{2x + 1}}).

  • Giải mục 4 trang 30 SGK Toán 12 tập 1 - Cùng khám phá

    Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau đây: a) (y = frac{{ - {x^2} - 2x - 2}}{{x + 1}}) b) ({rm{y}} = frac{{{x^2} - 2x - 3}}{{x - 2}})

  • Giải mục 5 trang 33, 34 SGK Toán 12 tập 1 - Cùng khám phá

    Trong đợt chào mừng kỷ niệm ngày 26 tháng 3, trường X có tổ chức cho các lớp bày các gian hàng tại sân trường. Để có thể che nắng, chứa đồ đạc trong quá trình tham gia hoạt động, một lớp đã nghĩ ra ý tưởng như sau: Dựng trên mặt đất bằng phẳng một chiếc lều từ một tấm bạt hình chữ nhật có chiều rộng là 4m và chiều dài là 6m, bằng cách gập đôi tấm bạt lại theo đoạn nối trung điểm hai cạnh là chiều dài của tấm bạt, hai mép chiều rộng còn lại của tấm bạt sát đất và cách nhau x (m). Tìm x để khoảng

  • Giải bài tập 1.20 trang 34 SGK Toán 12 tập 1 - Cùng khám phá

    Khảo sát sự biến thiên và vẽ đồ thị các hàm số sau: a) (y = {x^3} + 3{x^2} - 4) b) (y = {x^3} + 4{x^2} + 4x) c) (y = - 2{x^3} + 2) d) (y = - {x^3} - {x^2} - x + 1)

  • Giải bài tập 1.21 trang 34 SGK Toán 12 tập 1 - Cùng khám phá

    Khảo sát sự biến thiên và vẽ đồ thị các hàm số sau: a) \(y = \frac{{x - 2}}{{2x + 1}}\) b) \(y = \frac{{1 - 2x}}{{2x + 4}}\)

>> Xem thêm

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí