Giải mục 2 trang 15, 16, 17 Chuyên đề học tập Toán 10 - Chân trời sáng tạo


Một nhà hóa học có ba dung dịch cùng một loại acid nhưng với nồng độ khác nhau là 10%, 20% và 40%. Trong một thí nghiệm,

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Lựa chọn câu để xem lời giải nhanh hơn

Thực hành 2

Một nhà hóa học có ba dung dịch cùng một loại acid nhưng với nồng độ khác nhau là 10%, 20% và 40%. Trong một thí nghiệm, để tạo ra 100ml dung dịch nồng độ 18%, nhà hóa học đã sử dụng lượng dung dịch nồng độ 10% gấp bốn lần lượng dung dịch nồng độ 40%. Tính số mililit dung dịch mỗi loại mà nhà hóa học đó đã sử dụng trong thí nghiệm này.

Phương pháp giải:

Bước 1: Lập hệ phương trình

+ Chọn ẩn và đặt điều kiện cho ẩn

+ Biểu diễn các đại lượng chưa biết theo ẩn và đại lượng đã biết

+ Lập các phương trình biểu thị mối quan hệ giữa các đại lượng

Bước 2: Giải hệ phương trình

Bước 3: Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thích hợp với bài toán và kết luận.

Lời giải chi tiết:

Gọi số mililit dung dịch mỗi loại 10%, 20% và 40% sử dụng trong thí nghiệm là x, y, z (đơn vị mililit) \((x,y,z > 0)\)

Tạo ra 100ml dung dịch mới nên ta có: \(x + y + z = 100\)

Khối lượng chất tan trong dung dịch mới là: \(10\% x + 20\% y + 40\% z = 18\% .100 \Leftrightarrow 0,1x + 0,2y + 0,4z = 18\)

Lượng dung dịch nồng độ 10% gấp bốn lần lượng dung dịch nồng độ 40% nên \(x = 4z\)

Từ đó ta có hệ phương trình bậc nhất ba ẩn:

\(\left\{ \begin{array}{l}x + y + z = 100\\0,1x + 0,2y + 0,4z = 18\\x - 4z = 0\end{array} \right.\)

Sử dụng máy tính cầm tay, ta được \(x = 40;y = 50;z = 10\)

Vậy nhà hóa học đó đã dùng 40ml dung dịch 10%, 50ml dung dịch 20%,10ml dung dịch 40%.

Vận dụng 1

Ba loại tế bào A, B, C thực hiện số lần nguyên phân lần lượt là 3, 4, 7 và tổng số tế bào con tạo ra là 480. Biết rằng khi chưa thực hiện nguyên phân, số tế bào loại B bằng tổng số tế bào loại A và loại C. Sau khi thực hiện nguyên phân, tổng số tế bào con loại A và loại C được tạo ra gấp năm lần số tế bào con loại B được tạo ra. Tính số tế bào con mỗi loại lúc ban đầu.

Phương pháp giải:

Bước 1: Lập hệ phương trình

+ Chọn ẩn và đặt điều kiện cho ẩn

+ Biểu diễn các đại lượng chưa biết theo ẩn và đại lượng đã biết

+ Lập các phương trình biểu thị mối quan hệ giữa các đại lượng

Bước 2: Giải hệ phương trình

Bước 3: Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thích hợp với bài toán và kết luận.

Lời giải chi tiết:

Gọi số tế bào con mỗi loại A, B, C lúc đầu là x, y, z (tế bào) \((x,y,z \in \mathbb{N})\)

Tổng số tế bào con tạo ra là 480 tế bào nên \(x{.2^3} + y{.2^4} + z{.2^7} = 480\)

Khi chưa thực hiện nguyên phân, số tế bào loại B bằng tổng số tế bào loại A và loại C nên \(y = x + z\)

Sau khi thực hiện nguyên phân, tổng số tế bào con loại A và loại C được tạo ra gấp năm lần số tế bào con loại B được tạo ra nên \(x{.2^3} + z{.2^7} = 5y{.2^4}\)

Từ đó ta có hệ phương trình bậc nhất ba ẩn:

\(\left\{ \begin{array}{l}x{.2^3} + y{.2^4} + z{.2^7} = 480\\y = x + z\\x{.2^3} + z{.2^7} = 5y{.2^4}\end{array} \right.\)

Sử dụng máy tính cầm tay, ta được \(x = 2;y = 5;z = 3\)

Vậy ban đầu có 2 tế bào loại A, 5 tế bào loại B và 3 tế bào loại C.

Vận dụng 2

Cho sơ đồ mạch điện như Hình 2. Tính các cường độ dòng điện \({I_1},{I_2},{I_3}\)

Phương pháp giải:

Bước 1: Lập hệ phương trình

+ Chọn ẩn và đặt điều kiện cho ẩn

+ Biểu diễn các đại lượng chưa biết theo ẩn và đại lượng đã biết

+ Lập các phương trình biểu thị mối quan hệ giữa các đại lượng

Bước 2: Giải hệ phương trình

Bước 3: Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thích hợp với bài toán và kết luận.

Lời giải chi tiết:

Ta có:

 

\(\left. \begin{array}{l}{U_{AB}} =  - {E_1} + {I_1}{R_1} =  - 4 + 16{I_1}\\{U_{AB}} = {I_2}{R_2} = 8{I_2}\\{U_{AB}} = {E_2} - {I_3}{R_3} = 5 - 4{I_3}\end{array} \right\} \Rightarrow \left\{ \begin{array}{l} - 4 + 16{I_1} = 8{I_2}\\5 - 4{I_3} = 8{I_2}\end{array} \right.\)

Tại nút B: \({I_1} + {I_2} = {I_3}\)

Từ đó ta có hệ phương trình bậc nhất ba ẩn:

\(\left\{ \begin{array}{l}16{I_1} - 8{I_2} = 4\\8{I_2} + 4{I_3} = 5\\{I_1} + {I_2} - {I_3} = 0\end{array} \right.\)

Sử dụng máy tính cầm tay, ta được \({I_1} = \frac{{11}}{{28}},{I_2} = \frac{2}{7},{I_3} = \frac{{19}}{{28}}\)

Vậy \({I_1} = \frac{{11}}{{28}}A,{I_2} = \frac{2}{7}A,{I_3} = \frac{{19}}{{28}}A\)

 


Bình chọn:
3.8 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí