 Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
                                                
                            Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
                         Bài 10. Vectơ trong mặt phẳng tọa độ Toán 10 Kết nối tr..
                                                        Bài 10. Vectơ trong mặt phẳng tọa độ Toán 10 Kết nối tr..
                                                    Giải mục 1 trang 60, 61 SGK Toán 10 tập 1 - Kết nối tri thức>
Trên trục số Ox, gọi A là điểm biểu diễn số 1 và đặt OA=i (H.4.32a). Gọi M là điểm biểu diễn số 4, N là điểm biểu diễn số -3/2. Hãy biểu thị mỗi vectơ OM, ON theo vectơ i Trong Hình 4.33: a) Hãy biểu thị mỗi vectơ OM, ON theo các vectơ i, j. Tìm tọa độ của vecto 0
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
HĐ1
Trả lời câu hỏi Hoạt động 1 trang 60 SGK Toán 10 Kết nối tri thức
Trên trục số Ox, gọi A là điểm biểu diễn số 1 và đặt \(\overrightarrow {OA} = \overrightarrow i \) (H.4.32a). Gọi M là điểm biểu diễn số 4, N là điểm biểu diễn số \( - \frac{3}{2}\). Hãy biểu thị mỗi vectơ \(\overrightarrow {OM} ,\;\overrightarrow {ON} \) theo vectơ \(\overrightarrow i \).

Phương pháp giải:
+) \(\overrightarrow a = k.\overrightarrow b \) \( (k > 0) \Leftrightarrow \) Vecto \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng, \(\left| {\overrightarrow a } \right| = k.\left| {\overrightarrow b } \right|\quad (k > 0)\)
+) \(\overrightarrow a = k.\overrightarrow b \) \( (k < 0) \Leftrightarrow \) Vecto \(\overrightarrow a \) và \(\overrightarrow b \) ngược hướng, \(\left| {\overrightarrow a } \right| = - k.\left| {\overrightarrow b } \right|\) \((k < 0)\)
(\(\overrightarrow b \ne \overrightarrow 0 \)).
Lời giải chi tiết:
Dễ thấy:
Vectơ \(\overrightarrow {OM} \) cùng hướng với vectơ \(\overrightarrow i \) và \(\left| {\overrightarrow {OM} } \right| = 4 = 4\left| {\overrightarrow i } \right|\).
Do đó: \(\overrightarrow {OM} = 4.\overrightarrow i \).
Tương tự, vectơ \(\overrightarrow {ON} \) ngược hướng với vectơ \(\overrightarrow i \) và \(\left| {\overrightarrow {ON} } \right| = \frac{3}{2} = \frac{3}{2}\left| {\overrightarrow i } \right|\).
Do đó: \(\overrightarrow {ON} = - \frac{3}{2}.\overrightarrow i \).
HĐ2
Trả lời câu hỏi Hoạt động 2 trang 61 SGK Toán 10 Kết nối tri thức
Trong Hình 4.33:
a) Hãy biểu thị mỗi vectơ \(\overrightarrow {OM} ,\;\overrightarrow {ON} \) theo các vectơ \(\overrightarrow i ,\;\overrightarrow j \).
b) Hãy biểu thị vectơ \(\overrightarrow {MN} \) theo các vectơ \(\overrightarrow {OM} ,\;\overrightarrow {ON} \) từ đó biểu thị vectơ \(\overrightarrow {MN} \) theo các vectơ \(\overrightarrow i ,\;\overrightarrow j \).

Phương pháp giải:
a) Quy tắc hình bình hành:
Tứ giác OAMB là hình bình hành thì \(\overrightarrow {OM} = \overrightarrow {OA} + \overrightarrow {OB} \).
b) Quy tắc hiệu: \(\overrightarrow {MN} = \overrightarrow {ON} - \overrightarrow {OM} \).
Lời giải chi tiết:
Dựng hình bình hành OAMB và OCND như hình dưới:
 
Khi đó: \(\overrightarrow {OM} = \overrightarrow {OA} + \overrightarrow {OB} \) và \(\overrightarrow {ON} = \overrightarrow {OC} + \overrightarrow {OD} \).
Dễ thấy:
\(\overrightarrow {OA} = 3\;\overrightarrow i ;\;\,\overrightarrow {OB} = 5\;\overrightarrow j \) và \(\overrightarrow {OC} = - 2\;\overrightarrow i ;\;\,\overrightarrow {OD} = \frac{5}{2}\;\overrightarrow j \)
\( \Rightarrow \left\{ \begin{array}{l}\overrightarrow {OM} = 3\;\overrightarrow i + 5\;\overrightarrow j \\\overrightarrow {ON} = - 2\;\overrightarrow i + \frac{5}{2}\;\overrightarrow j \end{array} \right.\)
b) Ta có: \(\overrightarrow {MN} = \overrightarrow {ON} - \;\overrightarrow {OM} \) (quy tắc hiệu)
\(\begin{array}{l} \Rightarrow \overrightarrow {MN} = \left( { - 2\;\overrightarrow i + \frac{5}{2}\;\overrightarrow j } \right) - \left( {\;3\;\overrightarrow i + 5\;\overrightarrow j } \right)\\ \Leftrightarrow \overrightarrow {MN} = \left( { - 2\;\overrightarrow i - 3\;\overrightarrow i } \right) + \left( {\frac{5}{2}\;\overrightarrow j - 5\;\overrightarrow j } \right)\\ \Leftrightarrow \overrightarrow {MN} = - 5\;\overrightarrow i - \frac{5}{2}\;\overrightarrow j \end{array}\)
Vậy \(\overrightarrow {MN} = - 5\;\overrightarrow i - \frac{5}{2}\;\overrightarrow j \).
LT1
Trả lời câu hỏi Luyện tập 1 trang 61 SGK Toán 10 Kết nối tri thức
Tìm tọa độ của \(\overrightarrow 0 \).
Lời giải chi tiết:
Vì: \(\overrightarrow 0 = 0.\overrightarrow i + 0.\overrightarrow j \) nên \(\overrightarrow 0 \) có tọa độ là (0;0).
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ- Giải mục 2 trang 61, 62, 63, 64 SGK Toán 10 tập 1 - Kết nối tri thức
- Giải bài 4.16 trang 65 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 4.17 trang 65 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 4.18 trang 65 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 4.19 trang 65 SGK Toán 10 tập 1 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            