Giải bài 4.16 trang 65 SGK Toán 10 tập 1 – Kết nối tri thức


Trong mặt phẳng tọa độ Oxy, cho các điểm M(1; 3), N(4; 2) a) Tính độ dài các đoạn thẳng OM, ON, MN. b) Chứng minh rằng tam giác OMN vuông cân.

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Trong mặt phẳng tọa độ Oxy, cho các điểm M(1; 3), N(4; 2).

a) Tính độ dài các đoạn thẳng OM, ON, MN.

b) Chứng minh rằng tam giác OMN vuông cân.

Phương pháp giải - Xem chi tiết

Độ dài vectơ \(\overrightarrow {OM} (x,y)\) là \(|\overrightarrow {OM} | = \sqrt {{x^2} + {y^2}} \).

Lời giải chi tiết

a) Ta có: M(1; 3) và N (4; 2).

\( \overrightarrow {OM} (1;3)\).

\(\overrightarrow {ON} (4;2)\).

\(\overrightarrow {MN}  = (4 - 1;2 - 3) = (3; - 1)\).

\( OM = \left| {\overrightarrow {OM} } \right| = \sqrt {{1^2} + {3^2}}  = \sqrt {10}\).

\(ON = \left| {\overrightarrow {ON} } \right| = \sqrt {{4^2} + {2^2}}  = 2\sqrt 5\).

\(MN = \left| {\overrightarrow {MN} } \right| = \sqrt {{3^2} + {{\left( { - 1} \right)}^2}}  = \sqrt {10} \).

b) Dễ thấy: \(OM = \sqrt {10}  = MN\) suy ra \( \Delta OMN\) cân tại M.

Lại có: \(O{M^2} + M{N^2} = 10 + 10 = 20 = O{N^2}\).

Theo định lí Pythagore đảo, ta có \(\Delta OMN\) vuông tại M.

Vậy \(\Delta OMN\) vuông cân tại M.


Bình chọn:
4.6 trên 31 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí