Giải mục 1 trang 37 SGK Toán 8 tập 1 - Kết nối tri thức >
Với hai số a,b bất kì, thực hiện phép tính (left( {a + b} right)left( {{a^2} - ab + {b^2}} right)) Từ đó rút ra liên hệ giữa ({a^3} + {b^3}) và (left( {a + b} right)left( {{a^2} - ab + {b^2}} right)).
HĐ1
Video hướng dẫn giải
Với hai số a,b bất kì, thực hiện phép tính
\(\left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right)\)
Từ đó rút ra liên hệ giữa \({a^3} + {b^3}\) và \(\left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right)\).
Phương pháp giải:
Muốn nhân hai đa thức ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các kết quả với nhau.
Lời giải chi tiết:
\(\begin{array}{l}\left( {a + b} \right).\left( {{a^2} - ab + {b^2}} \right) = a.{a^2} - a.ab + a.{b^2} + b.{a^2} - b.ab + b.{b^2}\\ = {a^3} - {a^2}b + a{b^2} + {a^2} - a{b^2} + {b^3}\\ = {a^3} + {b^3}\end{array}\)
Luyện tập 1
Video hướng dẫn giải
- Viết \({x^3} + 27\) dưới dạng tích.
- Rút gọn biểu thức \({x^3} + 8{y^3} - \left( {x + 2y} \right)\left( {{x^2} - 2xy + 4{y^2}} \right)\).
Phương pháp giải:
Sử dụng hằng đẳng thức \({A^3} + {B^3} = \left( {A + B} \right)\left( {{A^2} - AB + {B^2}} \right)\)
Lời giải chi tiết:
- \({x^3} + 27 = {x^3} + {3^3} = \left( {x + 3} \right)\left( {{x^2} - 3x + 9} \right)\)
- \({x^3} + 8{y^3} - \left( {x + 2y} \right)\left( {{x^2} - 2xy + 4{y^2}} \right) = {x^3} + 8{y^3} - \left[ {{x^3} + {{\left( {2y} \right)}^3}} \right] = {x^3} + 8{y^3} - \left( {{x^3} + 8{y^3}} \right) = 0\)
- Giải mục 2 trang 38 SGK Toán 8 tập 1 - Kết nối tri thức
- Giải bài 2.12 trang 39 SGK Toán 8 tập 1 - Kết nối tri thức
- Giải bài 2.13 trang 39 SGK Toán 8 tập 1 - Kết nối tri thức
- Giải bài 2.14 trang 39 SGK Toán 8 tập 1 - Kết nối tri thức
- Giải bài 2.15 trang 39 SGK Toán 8 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải dự án 2 trang 112 SGK Toán 8 tập 1
- Lý thuyết Hình chóp tứ giác đều SGK Toán 8 - Kết nối tri thức
- Lý thuyết Hình chóp tam giác đều SGK Toán 8 - Kết nối tri thức
- Lý thuyết Hình đồng dạng SGK Toán 8 - Kết nối tri thức
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Kết nối tri thức