Giải mục 1 trang 28,29,30 SGK Toán 12 tập 2 - Cánh diều


Tính diện tích hình phẳng

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Lựa chọn câu để xem lời giải nhanh hơn

HĐ1

Trả lời câu hỏi Hoạt động 1 trang 28 SGK Toán 12 Cánh diều

Cho hàm số \(y = f(x) = {x^3} - 2{x^2} - x + 2\) có đồ thị minh họa ở Hình 11.

a) Quan sát Hình 11, hãy cho biết các hình phẳng \({H_1},{H_2},{H_3}\) lần lượt được giới hạn bởi các đường thẳng và đồ thị hàm số nào

b) Tính diện tích \({S_{{H_1}}},{S_{{H_2}}},{S_{{H_3}}}\) của các hình phẳng đó

c) Gọi H là  tập hợp của các hình phẳng \({H_1},{H_2},{H_3}\). Hình phẳng H được gọi là hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành và các đường thẳng x = 0, x = 3. Chứng tỏ rằng diện tích \({S_H}\) của hình phẳng H bằng \({S_H} = {S_{{H_1}}} + {S_{{H_2}}} + {S_{{H_3}}} = \int\limits_0^3 {\left| {f(x)} \right|dx} \)

Phương pháp giải:

a) Quan sát hình vẽ

b) Sử dụng công thức tính diện tích hình phẳng giới hạn bởi đồ thị của các hàm số y = f(x), trục hoành và hai đường thẳng x = a, x = b là: \(S = \int\limits_a^b {\left| {f(x)} \right|dx} \)

c) Sử dụng tính chất của tích phân \(\int\limits_a^b {f(x)} dx = \int\limits_a^c {f(x)} dx + \int\limits_c^b {f(x)} dx\)

Lời giải chi tiết:

a) Hình \({H_1}\) được giới hạn bởi các đường thẳng x = 0, x = 1 và đồ thị hàm số y = f(x)

Hình \({H_2}\) được giới hạn bởi các đường thẳng x = 1, x = 2 và đồ thị hàm số y = f(x)

Hình \({H_3}\) được giới hạn bởi các đường thẳng x = 2, x = 3 và đồ thị hàm số y = f(x)

b) \({S_{{H_1}}} = \int\limits_0^1 {f(x)dx}  = \int\limits_0^1 {\left( {{x^3} - 2{x^2} - x + 2} \right)dx}  = \left. {\left( {\frac{{{x^4}}}{4} - \frac{2}{3}{x^3} - \frac{{{x^2}}}{2} + 2x} \right)} \right|_0^1 = \frac{{13}}{{12}}\)

\(\int\limits_1^2 {f(x)dx = \int\limits_1^2 {\left( {{x^3} - 2{x^2} - x + 2} \right)} } dx = \left. {\left( {\frac{{{x^4}}}{4} - \frac{2}{3}{x^3} - \frac{{{x^2}}}{2} + 2x} \right)} \right|_1^2 =  - \frac{5}{{12}} \to {S_{{H_2} = }}\frac{5}{{12}}\)

\({S_{{H_3}}} = \int\limits_2^3 {f(x)dx = \int\limits_2^3 {\left( {{x^3} - 2{x^2} - x + 2} \right)} } dx = \left. {\left( {\frac{{{x^4}}}{4} - \frac{2}{3}{x^3} - \frac{{{x^2}}}{2} + 2x} \right)} \right|_2^3 = \frac{{37}}{{12}}\)

c) \({S_H} = {S_{{H_1}}} + {S_{{H_2}}} + {S_{{H_3}}} = \int\limits_0^1 {f(x)dx}  + \left| {\int\limits_1^2 {f(x)dx} } \right| + \int\limits_2^3 {f(x)dx}  = \int\limits_0^3 {\left| {f(x)} \right|dx} \)

HĐ2

Trả lời câu hỏi Hoạt động 2 trang 30 SGK Toán 12 Cánh diều

Cho các hàm số \(y = {2^x}\), y = x

Gọi \({S_1}\) là diện tích hình phẳng giới hạn bởi trục Ox, hai đường thẳng x = 1, x = 2 và đồ thị hàm số \(y = {2^x}\)

Gọi \({S_2}\) là diện tích hình phẳng giới hạn bởi trục Ox, hai đường thẳng x = 1, x = 2 và đồ thị hàm số y = x

Gọi S là phẳng giới hạn bởi các đồ thị hàm số \(y = {2^x}\), y = x và hai đường thẳng x = 1, x = 2

(Hình 14)

a) Biểu diễn S theo \({S_1},{S_2}\)

b) So sánh S và \(\int\limits_1^2 {({2^x} - x)dx} \)

Phương pháp giải:

Quan sát hình vẽ

Lời giải chi tiết:

a) \(S = {S_1} - {S_2}\)

b) \(S = {S_1} - {S_2}\)

 \(\int\limits_1^2 {({2^x} - x)dx}  = \int\limits_1^2 {{2^x}dx}  - \int\limits_1^2 {xdx}  = {S_1} - {S_2}\)

Vậy S = \(\int\limits_1^2 {({2^x} - x)dx} \)


Bình chọn:
4.9 trên 7 phiếu
  • Giải mục 2 trang 34,35,36 SGK Toán 12 tập 2 - Cánh diều

    Tính thể tích của hình khối

  • Giải bài tập 1 trang 39 SGK Toán 12 tập 2 - Cánh diều

    Hình thang cong ABCD ở Hình 28 có diện tích bằng: A. (intlimits_1^2 {left( {frac{4}{x} - x + 3} right)dx} ) B. (intlimits_1^2 {left( {frac{4}{x} + x + 3} right)dx} ) C. (intlimits_1^2 {left( {frac{4}{x} - x - 3} right)dx} ) D. (intlimits_2^4 {left( {frac{4}{x} + x + 3} right)dx} )

  • Giải bài tập 2 trang 39 SGK Toán 12 tập 2 - Cánh diều

    Thể tích khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm số (f(x) = sqrt x ), trục hoành và hai đường thẳng x = 0, x = 2 quay quanh trục Ox là: A. (pi intlimits_0^2 {sqrt x dx} ) B. (pi intlimits_0^2 {xdx} ) C. (intlimits_0^2 {sqrt x dx} ) D. (intlimits_0^2 {xdx} )

  • Giải bài tập 3 trang 39 SGK Toán 12 tập 2 - Cánh diều

    Cho đồ thị hàm số (y = {e^x}) và hình phẳng được tô màu như Hình 29 a) Hình phẳng đó được giới hạn bởi các đường nào? b) Tính diện tích hình phẳng đó

  • Giải bài tập 4 trang 39 SGK Toán 12 tập 2 - Cánh diều

    Cho đồ thị các hàm số (y = {left( {frac{1}{2}} right)^x}), y = x + 1 và hình phẳng được tô màu như hình 30 a) Hình phẳng đó được giới hạn bởi các đường nào? b) Tính diện tích hình phẳng đó

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Cánh diều - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí