Giải bài tập 5.47 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức


Trong không gian Oxyz, cho hai đường thẳng d: \(\frac{{x + 2}}{1} = \frac{{y + 3}}{2} = \frac{{z - 3}}{{ - 2}}\) và \(d':\left\{ \begin{array}{l}x = 1 - t\\y = - 2 + t\\z = 2t\end{array} \right.\). a) Xác định vị trí tương đối của hai đường thẳng d và d’. b) Tính góc giữa d và d’.

Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Trong không gian Oxyz, cho hai đường thẳng d: \(\frac{{x + 2}}{1} = \frac{{y + 3}}{2} = \frac{{z - 3}}{{ - 2}}\) và \(d':\left\{ \begin{array}{l}x = 1 - t\\y =  - 2 + t\\z = 2t\end{array} \right.\).

a) Xác định vị trí tương đối của hai đường thẳng d và d’.

b) Tính góc giữa d và d’.

Phương pháp giải - Xem chi tiết

a) Sử dụng kiến thức về vị trí tương đối của hai đường thẳng để xét vị trí tương đối của hai đường thẳng: Trong không gian Oxyz, cho hai đường thẳng \({\Delta _1},{\Delta _2}\) lần lượt đi qua các điểm \({A_1}\left( {{x_1};{y_1};{z_1}} \right),{A_2}\left( {{x_2};{y_2};{z_2}} \right)\) và tương ứng có vectơ chỉ phương \(\overrightarrow {{u_1}}  = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow {{u_2}}  = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó:

\({\Delta _1}//{\Delta _2} \Leftrightarrow \) \(\overrightarrow {{u_1}} \) cùng phương với \(\overrightarrow {{u_2}} \) và \({A_1}\not  \in {\Delta _2}\)

\({\Delta _1} \equiv {\Delta _2} \Leftrightarrow \) \(\overrightarrow {{u_1}} \) cùng phương với \(\overrightarrow {{u_2}} \) và \({A_1} \in {\Delta _2}\)

\({\Delta _1}\) và \({\Delta _2}\) chéo nhau \( \Leftrightarrow \overrightarrow {{A_1}{A_2}} .\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] \ne 0\)

\({\Delta _1}\) và \({\Delta _2}\) cắt nhau \( \Leftrightarrow \left\{ \begin{array}{l}\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] \ne \overrightarrow 0 \\\overrightarrow {{A_1}{A_2}} .\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = 0\end{array} \right.\)

b) Sử dụng kiến thức về góc giữa hai đường thẳng để tính: Trong không gian Oxyz, cho hai đường thẳng \(\Delta \) và \(\Delta '\)  tương ứng có vectơ chỉ phương \(\overrightarrow u  = \left( {a;b;c} \right),\overrightarrow {u'}  = \left( {a';b';c'} \right)\). Khi đó: \(\cos \left( {\Delta ,\Delta '} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow {u'} } \right)} \right| = \frac{{\left| {aa' + bb' + cc'} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} .\sqrt {a{'^2} + b{'^2} + c{'^2}} }}\).

Lời giải chi tiết

a) Đường thẳng d nhận \(\overrightarrow {{u_1}} \left( {1;2; - 2} \right)\) làm một vectơ chỉ phương và đi qua điểm \(A\left( { - 2; - 3;3} \right).\)

Đường thẳng d’ nhận \(\overrightarrow {{u_2}} \left( { - 1;1;2} \right)\) làm một vectơ chỉ phương và đi qua điểm \(B\left( {1; - 2;0} \right)\)

Ta có: \(\overrightarrow {AB} \left( {3;1; - 3} \right),\) \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}2&{ - 2}\\1&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&1\\2&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&2\\{ - 1}&1\end{array}} \right|} \right) = \left( {6;0;3} \right) \ne \overrightarrow 0 \)

Vì \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {AB}  = 6.3 + 0.1 + 3.\left( { - 3} \right) = 18 + 0 - 9 = 9 \ne 0\) nên d, d’ chéo nhau.

b) Ta có: \(\cos \left( {d,d'} \right) = \left| {\cos \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right)} \right| = \frac{{\left| {1.\left( { - 1} \right) + 2.1 - 2.2} \right|}}{{\sqrt {{1^2} + {2^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{{\left( { - 1} \right)}^2} + {1^2} + {2^2}} }} = \frac{3}{{3\sqrt 6 }} = \frac{{\sqrt 6 }}{6}\)

Do đó, góc giữa d và d’ xấp xỉ \(65,{9^o}\).


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài tập 5.48 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức

    Trong không gian Oxyz, tính góc tạo bởi đường thẳng d: \(\frac{{x + 3}}{2} = \frac{{y - 2}}{{ - 2}} = \frac{{z + 1}}{1}\) và mặt phẳng (P): \(x + y - 2z + 3 = 0\).

  • Giải bài tập 5.49 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức

    Trong không gian Oxyz, tính góc giữa mặt phẳng (P): \(x + y + z - 1 = 0\) và mặt phẳng Oxy.

  • Giải bài tập 5.51 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức

    Bản thiết kế của một công trình được vẽ trong một hệ trục tọa độ Oxyz. Sàn nhà của công trình thuộc mặt phẳng Oxy, đường ống thoát nước thẳng và đi qua hai điểm \(A\left( {1;2; - 1} \right)\) và \(B\left( {5;6; - 2} \right)\). Tính góc tạo bởi đường ống thoát nước và mặt sàn.

  • Giải bài tập 5.52 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức

    Nếu đứng trước biển và nhìn ra xa, người ta sẽ thấy một đường giao giữa mặt biển và bầu trời, đó là đường chân trời đối với người quan sát (H.5.45a). Về mặt Vật lí, đường chân trời là đường giới hạn phần Trái Đất mà người quan sát có thể nhìn thấy được (phần còn lại bị chính Trái Đất che khuất). Ta có thể hình dung rằng, nếu người quan sát ở tại đỉnh một chiếc nón và Trái Đất được “thả” vào trong chiếc nón đó, thì đường chân trời trong trường hợp này là đường chạm giữa Trái Đất và chiếc nón (H.5

  • Giải bài tập 5.50 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức

    Từ mặt nước trong một bể nước, tại ba vị trí đôi một cách nhau 2m, người ta lần lượt thả dây dọi để quả dọi chạm đáy bể. Phần dây dọi (thẳng) nằm trong nước tại ba vị trí đó lần lượt có độ dài 4m; 4,4m; 4,8m. Biết đáy bể là phẳng. Hỏi đáy bể nghiêng so với mặt phẳng nằm ngang một góc bao nhiêu độ?

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí