Giải bài tập 5.35 trang 127 SGK Toán 9 tập 1 - Cùng khám phá>
Cho đường tròn (O; R). Từ điểm M nằm ngoài đường tròn với \(MO = 2R\), vẽ hai tiếp tuyến tiếp xúc (O) tại A và B. Viết công thức tính phần diện tích nằm ngoài đường tròn (O) của tứ giác MAOB theo R.
Tổng hợp Đề thi vào 10 có đáp án và lời giải
Toán - Văn - Anh
Đề bài
Cho đường tròn (O; R). Từ điểm M nằm ngoài đường tròn với \(MO = 2R\), vẽ hai tiếp tuyến tiếp xúc (O) tại A và B. Viết công thức tính phần diện tích nằm ngoài đường tròn (O) của tứ giác MAOB theo R.
Phương pháp giải - Xem chi tiết
+ Tính số đo góc AOM, từ đó tính được góc AOB, từ đó tính được số đo cung nhỏ AB.
+ Chứng minh \(\Delta OAM = \Delta OBM\left( {c.g.c} \right)\), suy ra \({S_{\Delta OAM}} = {S_{\Delta OBM}}\) nên \({S_{OAMB}} = {S_{\Delta OAM}} + {S_{\Delta OBM}} = 2{S_{\Delta OAM}}\).
+ Diện tích hình quạt tâm O, cung nhỏ AB là: ${{S}_{q}}=\frac{\pi .O{{A}^{2}}.sđ{{\overset\frown{AB}}_{nhỏ}}}{{{360}^{o}}}$.
+ Diện tích nằm ngoài đường tròn (O) của tứ giác MAOB là: \(S = {S_{OAMB}} - {S_q}\).
Lời giải chi tiết
Vì MA, MB là tiếp tuyến của (O) nên
+ \(MA = MB\).
+ OA là tia phân giác của góc AOB, suy ra \(\widehat {AOM} = \widehat {MOB} = \frac{1}{2}\widehat {AOB}\).
Vì MA là tiếp tuyến của (O) nên \(MA \bot AO\) nên \(\Delta AOM\) vuông tại A. Suy ra:
+ \(AM = \sqrt {M{O^2} - A{O^2}} = \sqrt {{{\left( {2R} \right)}^2} - {R^2}} = \sqrt 3 R\).
+ \(\cos AOM = \frac{{OA}}{{OM}} = \frac{R}{{2R}} = \frac{1}{2}\) nên \(\widehat {AOM} = {60^o}\), suy ra \(\widehat {AOB} = {2.60^o} = {120^o}\).
Vì AOB là góc ở tâm chắn cung nhỏ AB nên số đo cung nhỏ AB bằng 120 độ.
Vì tam giác AOM vuông tại A nên
\({S_{AOM}} = \frac{1}{2}OA.AM = \frac{1}{2}.R.R\sqrt 3 = \frac{{{R^2}\sqrt 3 }}{3}\).
Tam giác OAM và tam giác OBM có:
\(OA = OB\) (= bán kính (O)),
\(OM\) chung,
\(\widehat {AOM} = \widehat {MOB}\left( {cmt} \right)\)
Do đó, \(\Delta OAM = \Delta OBM\left( {c.g.c} \right)\).
Suy ra, \({S_{OAMB}} = {S_{\Delta OAM}} + {S_{\Delta OBM}} = 2{S_{\Delta OAM}} = \frac{{2{R^2}\sqrt 3 }}{3}\).
Diện tích hình quạt tâm O, cung nhỏ AB là:
${{S}_{q}}=\frac{\pi .O{{A}^{2}}.sđ{{\overset\frown{AB}}_{nhỏ}}}{360}=\frac{\pi .{{R}^{2}}.120}{360}=\frac{\pi .{{R}^{2}}}{3}$.
Diện tích nằm ngoài đường tròn (O) của tứ giác MAOB là: \(S = {S_{OAMB}} - {S_q} = \frac{{2{R^2}\sqrt 3 }}{3} - \frac{{\pi .{R^2}}}{3} = \frac{{{R^2}}}{3}\left( {2\sqrt 3 - \pi } \right)\).


- Giải bài tập 5.36 trang 127 SGK Toán 9 tập 1 - Cùng khám phá
- Giải bài tập 5.37 trang 127 SGK Toán 9 tập 1 - Cùng khám phá
- Giải bài tập 5.38 trang 127 SGK Toán 9 tập 1 - Cùng khám phá
- Giải bài tập 5.39 trang 128 SGK Toán 9 tập 1 - Cùng khám phá
- Giải bài tập 5.40 trang 128 SGK Toán 9 tập 1 - Cùng khám phá
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Cách tính xác suất của biến cố trong một số mô hình đơn giản Toán 9 Cùng khám phá
- Lý thuyết Phép thử ngẫu nhiên. Không gian mẫu Toán 9 Cùng khám phá
- Lý thuyết Tần số ghép nhóm, tần số tương đối ghép nhóm Toán 9 Cùng khám phá
- Lý thuyết Tần số tương đối Toán 9 Cùng khám phá
- Lý thuyết Tần số Toán 9 Cùng khám phá
- Lý thuyết Cách tính xác suất của biến cố trong một số mô hình đơn giản Toán 9 Cùng khám phá
- Lý thuyết Phép thử ngẫu nhiên. Không gian mẫu Toán 9 Cùng khám phá
- Lý thuyết Tần số ghép nhóm, tần số tương đối ghép nhóm Toán 9 Cùng khám phá
- Lý thuyết Tần số tương đối Toán 9 Cùng khám phá
- Lý thuyết Tần số Toán 9 Cùng khám phá