Giải bài tập 4.20 trang 89 SGK Toán 9 tập 1 - Cùng khám phá>
Làm tròn số đo góc đến phút và độ dài đến hàng phần mười của đơn vị đo độ dài được cho. Người ta làm một con đường gồm ba đoạn AB, BC, CD bao quanh hồ nước như Hình 4.34. Tính khoảng cách AD. Gợi ý: Từ điểm A, kẻ đường vuông góc AH xuống BC và AK xuống CD.
Đề bài
Làm tròn số đo góc đến phút và độ dài đến hàng phần mười của đơn vị đo độ dài được cho.
Người ta làm một con đường gồm ba đoạn AB, BC, CD bao quanh hồ nước như Hình 4.34. Tính khoảng cách AD.
Gợi ý: Từ điểm A, kẻ đường vuông góc AH xuống BC và AK xuống CD.
Phương pháp giải - Xem chi tiết
+ Từ điểm A, kẻ đường thẳng vuông góc BC tại H và vuông góc với CD tại K.
+ Tam giác AHB vuông tại H nên \(BH = AB.\cos B\), \(AH = AB.\sin B\).
+ Do đó, \(CH = BC - BH\).
+ Chứng minh tứ giác AHCK là hình chữ nhật suy ra \(AH = KC,AK = CH\).
+ Ta có: \(DK = DC - KC\).
+ Áp dụng định lí Pythagore vào tam giác ADK vuông tại K tính được AD.
Lời giải chi tiết
Từ điểm A, kẻ đường thẳng vuông góc BC tại H và vuông góc với CD tại K.
Tam giác AHB vuông tại H nên
\(BH = AB.\cos B = 10\cos {70^o}\left( m \right)\),
\(AH = AB.\sin B = 10\sin {70^o}\left( m \right)\).
Do đó, \(CH = BC - BH = 13 - 10\cos {70^o} \approx 9,6\left( m \right)\).
Tứ giác AHCK có \(\widehat {AHC} = \widehat {HCK} = \widehat {AKC} = {90^o}\) nên tứ giác AHCK là hình chữ nhật.
Do đó, \(AH = KC = 10\sin {70^o}\left( m \right)\), \(AK = CH \approx 9,6m\)
Ta có: \(DK = DC - KC = 15 - 10\sin {70^o} \approx 5,6m\)
Tam giác ADK vuông tại K nên
\(D{A^2} = A{K^2} + D{K^2} = 9,{6^2} + 5,{6^2} = 123,52\) (định lí Pythagore) nên \(AD \approx 11,1m\).
- Giải bài tập 4.21 trang 90 SGK Toán 9 tập 1 - Cùng khám phá
- Giải bài tập 4.22 trang 90 SGK Toán 9 tập 1 - Cùng khám phá
- Giải bài tập 4.23 trang 90 SGK Toán 9 tập 1 - Cùng khám phá
- Giải bài tập 4.24 trang 90 SGK Toán 9 tập 1 - Cùng khám phá
- Giải bài tập 4.25 trang 90 SGK Toán 9 tập 1 - Cùng khám phá
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Cách tính xác suất của biến cố trong một số mô hình đơn giản Toán 9 Cùng khám phá
- Lý thuyết Phép thử ngẫu nhiên. Không gian mẫu Toán 9 Cùng khám phá
- Lý thuyết Tần số ghép nhóm, tần số tương đối ghép nhóm Toán 9 Cùng khám phá
- Lý thuyết Tần số tương đối Toán 9 Cùng khám phá
- Lý thuyết Tần số Toán 9 Cùng khám phá
- Lý thuyết Cách tính xác suất của biến cố trong một số mô hình đơn giản Toán 9 Cùng khám phá
- Lý thuyết Phép thử ngẫu nhiên. Không gian mẫu Toán 9 Cùng khám phá
- Lý thuyết Tần số ghép nhóm, tần số tương đối ghép nhóm Toán 9 Cùng khám phá
- Lý thuyết Tần số tương đối Toán 9 Cùng khám phá
- Lý thuyết Tần số Toán 9 Cùng khám phá