Giải bài tập 4.19 trang 89 SGK Toán 9 tập 1 - Cùng khám phá>
Làm tròn số đo góc đến phút và độ dài đến hàng phần mười của đơn vị đo độ dài được cho. Khi tia sáng được truyền qua mặt phân cách giữa không khí và nước thì đường đi tia sáng sẽ bị lệch đi do hiện tượng khúc xạ ánh sáng. Góc tới i và góc khúc xạ r như Hình 4.33 liên hệ với nhau theo công thức \(\frac{{\sin i}}{{\sin r}} = \frac{3}{4}\). Một con cá bơi ở vị trí C. Do ánh sáng bị khúc xạ nên Minh đứng trên bờ nhìn xuống nước với góc \(r = {54^o}\) thì thấy con cá ở vị trí A thẳng hàng với O, M v
Đề bài
Làm tròn số đo góc đến phút và độ dài đến hàng phần mười của đơn vị đo độ dài được cho.
Khi tia sáng được truyền qua mặt phân cách giữa không khí và nước thì đường đi tia sáng sẽ bị lệch đi do hiện tượng khúc xạ ánh sáng. Góc tới i và góc khúc xạ r như Hình 4.33 liên hệ với nhau theo công thức \(\frac{{\sin i}}{{\sin r}} = \frac{3}{4}\). Một con cá bơi ở vị trí C. Do ánh sáng bị khúc xạ nên Minh đứng trên bờ nhìn xuống nước với góc \(r = {54^o}\) thì thấy con cá ở vị trí A thẳng hàng với O, M và cách mặt nước một đoạn \(AB = 71cm\).
a) Tính góc tới i.
b) Tính độ sâu BC từ mặt nước đến vị trí thực sự mà con cá đang bơi.
Phương pháp giải - Xem chi tiết
a) Ta có: \(\frac{{\sin i}}{{\sin r}} = \frac{3}{4}\) nên \(\sin i = \frac{3}{4}\sin r\), do đó tính được góc tới i.
b) Ta có: \(\widehat {yOA} = \hat r = {54^o}\), \(\widehat {AOB} = {90^o} - \widehat {yOA} = {36^o}\), \(\widehat {BOC} = {90^o} - \hat i\).
Tam giác AOB vuông tại B nên \(OB = AB.\cot \widehat {AOB}\).
Tam giác CBO vuông tại B nên \(BC = OB.\tan \widehat {BOC}\).
Lời giải chi tiết
a) Ta có: \(\frac{{\sin i}}{{\sin r}} = \frac{3}{4}\) nên \(\sin i = \frac{3}{4}\sin r = \frac{3}{4}\sin {54^o} \approx 0,6\), do đó, \(\widehat i \approx {37^o}21'\).
b) Ta có: \(\widehat {yOA} = \hat r = {54^o}\), \(\widehat {AOB} = {90^o} - \widehat {yOA} = {36^o}\), \(\widehat {BOC} = {90^o} - \hat i \approx {52^o}39'\)
Tam giác AOB vuông tại B nên
\(OB = AB.\cot \widehat {AOB} = 71.\cot {36^o} \approx 97,7\left( {cm} \right)\)
Tam giác CBO vuông tại B nên
\(BC = OB.\tan \widehat {BOC} \approx 97,7.\tan {52^o}39' \approx 128\left( {cm} \right)\)
Vậy độ sâu từ mặt nước đến vị trí thực sự mà con cá đang bơi là khoảng 128cm.
- Giải bài tập 4.20 trang 89 SGK Toán 9 tập 1 - Cùng khám phá
- Giải bài tập 4.21 trang 90 SGK Toán 9 tập 1 - Cùng khám phá
- Giải bài tập 4.22 trang 90 SGK Toán 9 tập 1 - Cùng khám phá
- Giải bài tập 4.23 trang 90 SGK Toán 9 tập 1 - Cùng khám phá
- Giải bài tập 4.24 trang 90 SGK Toán 9 tập 1 - Cùng khám phá
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Cách tính xác suất của biến cố trong một số mô hình đơn giản Toán 9 Cùng khám phá
- Lý thuyết Phép thử ngẫu nhiên. Không gian mẫu Toán 9 Cùng khám phá
- Lý thuyết Tần số ghép nhóm, tần số tương đối ghép nhóm Toán 9 Cùng khám phá
- Lý thuyết Tần số tương đối Toán 9 Cùng khám phá
- Lý thuyết Tần số Toán 9 Cùng khám phá
- Lý thuyết Cách tính xác suất của biến cố trong một số mô hình đơn giản Toán 9 Cùng khám phá
- Lý thuyết Phép thử ngẫu nhiên. Không gian mẫu Toán 9 Cùng khám phá
- Lý thuyết Tần số ghép nhóm, tần số tương đối ghép nhóm Toán 9 Cùng khám phá
- Lý thuyết Tần số tương đối Toán 9 Cùng khám phá
- Lý thuyết Tần số Toán 9 Cùng khám phá