Giải bài 9.17 trang 62 sách bài tập toán 11 - Kết nối tri thức với cuộc sống


Tính đạo hàm cấp hai của các hàm số sau:

Đề bài

Tính đạo hàm cấp hai của các hàm số sau:

a) \(y = \frac{{{x^4}}}{4} - 2{x^2} + 1\);                              

b) \(y = \frac{{2x + 1}}{{x - 1}}\).

Phương pháp giải - Xem chi tiết

Áp dụng quy tắc tính đạo hàm  \({\left( {\frac{u}{v}} \right)^\prime } = \frac{{u'v - uv'}}{{{v^2}}}\,\,\left( {v = v\left( x \right) \ne 0} \right)\)

Lời giải chi tiết

a)\(\begin{array}{*{20}{l}}{\;\;y' = {x^3} - 4x \Rightarrow y'' = 3{x^2} - 4;}&\;\end{array}\)

\({\rm{b)\;}}y' = {\left( {\frac{{2x + 1}}{{x - 1}}} \right)^\prime } =  - \frac{3}{{{{(x - 1)}^2}}} \Rightarrow y'' = {\left[ { - \frac{3}{{{{(x - 1)}^2}}}} \right]^\prime } = \frac{{3.2.(x - 1)}}{{{{(x - 1)}^4}}} = \frac{6}{{{{(x - 1)}^3}}}\)


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí