Giải bài 9 trang 69 SGK Toán 7 tập 1 - Cánh diều>
Lớp 7A có 45 học sinh. Trong đợt sơ kết Học kì I, số học sinh ở các mức Tốt, Khá, Đạt tỉ lệ với ba số 3;4;2. Tính số học sinh ở mỗi mức, biết trong lớp không có học sinh nào ở mức Chưa đạt.
Tổng hợp đề thi học kì 1 lớp 7 tất cả các môn - Cánh diều
Toán - Văn - Anh - Khoa học tự nhiên...
Đề bài
Lớp 7A có 45 học sinh. Trong đợt sơ kết Học kì I, số học sinh ở các mức Tốt, Khá, Đạt tỉ lệ với ba số 3;4;2. Tính số học sinh ở mỗi mức, biết trong lớp không có học sinh nào ở mức Chưa đạt.
Phương pháp giải - Xem chi tiết
Gọi số học sinh ở các mức Tốt, Khá, Đạt là x,y,z (\(x,y,z \in \mathbb{N}\))
Sử dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{{a + c + e}}{{b + d + f}}\)
Lời giải chi tiết
Gọi số học sinh ở các mức Tốt, Khá, Đạt là x,y,z (\(x,y,z \in \mathbb{N}\))
Vì lớp 7A có 45 học sinh và không có học sinh nào ở mức Chưa đạt nên x+y+z =45
Vì số học sinh ở các mức Tốt, Khá, Đạt tỉ lệ với ba số 3;4;2 nên \(\frac{x}{3} = \frac{y}{4} = \frac{z}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\frac{x}{3} = \frac{y}{4} = \frac{z}{2} = \frac{{x + y + z}}{{3 + 4 + 2}} = \frac{{45}}{9} = 5\\ \Rightarrow x = 3.5 = 15\\y = 4.5 = 20\\z = 2.5 = 10\end{array}\)
Vậy số học sinh ở các mức Tốt, Khá, Đạt lần lượt là: 15 bạn, 20 bạn và 10 bạn.
- Giải bài 10 trang 70 SGK Toán 7 tập 1 - Cánh diều
- Giải bài 11 trang 70 SGK Toán 7 tập 1 - Cánh diều
- Giải bài 12 trang 70 SGK Toán 7 tập 1 - Cánh diều
- Giải bài 13 trang 70 SGK Toán 7 tập 1 - Cánh diều
- Giải bài 14 trang 70 SGK Toán 7 tập 1 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục
- Tạo đồ dùng dạng hình lăng trụ đứng SGK Toán 7 Cánh diều tập 1
- Giải câu hỏi trang 39, 40 SGK Toán 7 Cánh diều tập 2
- Lý thuyết Trường hợp bằng nhau thứ ba của tam giác: góc-cạnh-góc SGK Toán 7 - Cánh diều
- Lý thuyết Trường hợp bằng nhau thứ hai của tam giác: cạnh-góc-cạnh SGK Toán 7 - Cánh diều
- Lý thuyết Trường hợp bằng nhau thứ nhất của tam giác: cạnh-cạnh-cạnh SGK Toán 7 - Cánh diều
- Tạo đồ dùng dạng hình lăng trụ đứng SGK Toán 7 Cánh diều tập 1
- Giải câu hỏi trang 39, 40 SGK Toán 7 Cánh diều tập 2
- Lý thuyết Trường hợp bằng nhau thứ ba của tam giác: góc-cạnh-góc SGK Toán 7 - Cánh diều
- Lý thuyết Trường hợp bằng nhau thứ hai của tam giác: cạnh-góc-cạnh SGK Toán 7 - Cánh diều
- Lý thuyết Trường hợp bằng nhau thứ nhất của tam giác: cạnh-cạnh-cạnh SGK Toán 7 - Cánh diều